Корректоры коэффициента мощности
Содержание
- С низким стартовым током: корректоры коэффициента мощности от компании STM
- ККМ-контроллеры STMicroelectronics
- Микросхема контроллера корректора коэффициента мощности L6562A
- ККМ-контроллеры STMicroelectronics серий L6563S/H
- Рекомендации по выбору компонентов для ККМ-контроллера
- Проблемы отбора мощности классическим выпрямителем
- Простейший корректор коэффициента мощности
- Импульсный корректор коэффициента мощности
- Корректор коэффициента мощности своими руками
С низким стартовым током: корректоры коэффициента мощности от компании STM
На сегодняшний день существуют два подхода к построению источников питания, дающих на выходе стабильное выходное напряжение или ток — источники питания с параметрической и с импульсной стабилизацией.
В линейных источниках стабилизация выходного параметра осуществляется за счет нелинейного элемента. Импульсные — работают по принципу управления энергией в катушке индуктивности с помощью одного или нескольких коммутирующих ключей.
Преимущество первых — низкий уровень высокочастотных шумов, что важно для аналоговой аппаратуры. За импульсными источниками — более высокие мощности и лучшее соотношение мощности и размеров. Кроме того, они имеют более высокий КПД. Вопросы сложности или простоты схемотехники являются весьма спорными, т.к. современная промышленность предлагает широкий спектр решений, в том числе и однокристальных, для любых приложений.
Но для сети линейные и импульсные источники питания являются нелинейной нагрузкой — форма потребляемого тока будет отличаться от синусоидальной, что приведет к возникновению дополнительных гармоник, а следовательно — к появлению реактивной составляющей мощности, дополнительному нагреву и потерям в линиях электропередач. Кроме того, другим потребителям энергии приходится применять дополнительные меры для защиты от сетевых помех — особенно в случае импульсных блоков высокой мощности, работающих под нагрузкой. Ограничения на допустимые наводки в сети от работающего прибора регламентируются соответствующими международными и государственными стандартами. Можно не сомневается, что российские стандарты в этой области будут ужесточаться и приближаться к мировым. В итоге именно те компании, которые освоят техники снижения сетевых помех, получат значительное преимущество над конкурентами.
Для снижения влияния потребителя тока на сеть применяются активные или пассивные корректоры. Пассивные корректоры представляют собой дроссели, чаще всего применяемые в устройствах небольшой мощности и некритичные к габаритным размерам. В остальных случаях целесообразно применение активных высокочастотных корректоров, часто называемых корректорами коэффициента мощности (ККМ или PFC — Power Factor Correction). К основным задачам ККМ можно отнести:
- Придание потребляемому от сети току синусоидальной формы (снижение коэффициента гармоник);
- Ограничение выходной мощности;
- Защиту от короткого замыкания;
- Защиту от пониженного или повышенного напряжений.
Фактически, ККМ можно рассматривать как некий буферный каскад (схему), снижающий взаимное влияние питающей сети и источника питания.
Типовая структура корректора мощности представлена на рисунке 1.
Рис. 1. Типовая схема корректора коэффициента мощности
ККМ может быть реализован не только на дискретных элементах, но и при помощи специализированных микросхем — контроллеров ККМ (PFC-корректоры). К основным производителям контроллеров корректоров коэффициента мощности относятся:
- STMicroelectronics- L4981, L656x;
- Texas Instruments- UCx854, UC28xx;
- International Rectifier — IR115x;
- ON Semiconductor- MC3x262, MC33368, NCP165x, NCP160x;
- Fairchild Semiconductor- FAN48xx, FAN69x, FAN7527;
- Linear Technology Corporation- LTC1248.
ККМ-контроллеры STMicroelectronics
Компания STMicroelectronics предлагает несколько серий производительных контроллеров ККМ, способных обеспечить различные режимы работы прибора. Дополнительные опции упрощают построение импульсных источников питания, учитывая стандарты энергосбережения и требования к уровню вносимых в питающую сеть искажений.
Таблица 1. Контроллеры корректора коэффициента мощности STMicroelectronics
Микросхема | Корпус | Режим работы | Напряжение питания, В |
Ток потребления, мА активный/стартовый (низкопотребляющий) | Примечание |
---|---|---|---|---|---|
L4981 | PDIP 20; SO-20 | ССМ | 19,5 | 12/0,3 | Мягкий старт; защита от перенапряжения, перегрузки по току |
L6561 | DIP-8; SO-8 | TM | 11…18 | 4/0,05 | Защита от перенапряжения |
L6562A | DIP-8; SO-8 | TM, Fixed-Off-Time | 10,5…22,5 | 3,5/0,03 | Защита от перенапряжения |
L6562AT | SO-8 | TM, Fixed-Off-Time | 10,5…22,5 | 3,5/0,03 | Защита от перенапряжения |
L6563H | SO-16 | TM, tracking boost | 10,3…22,5 | 5/0,09 | Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора |
L6563S | SO-14 | TM, tracking boost | 10,3…22,5 | 5/0,09 | Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора |
L6564 | SSOP 10 | TM, tracking boost | 10,3…22,5 | 5/0,09 | Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора |
Микросхема контроллера корректора мощности L4981 позволяет построить высокоэффективные блоки питания с синусоидальным током потребления. Коэффициент мощности может достигать величины 0,99 при низком уровне гармоник. Сама микросхема реализована по технологии BCD 60II и работает по принципу контроля среднего тока (CCM), поддерживая синусоидальность потребляемого тока.
L4981 может быть использована в системах с питающими напряжениями 85…265 В без внешнего драйвера силового ключа. Серия «A» для ШИМ-контроллера использует фиксированную частоту; серия «B» для оптимизации входного фильтра дополнительно использует частотную модуляцию.
Также в состав микросхемы входят: прецизионный источник опорного напряжения, усилитель рассогласования, схема блокировки работы при критическом падении напряжения, датчик тока, схема мягкого старта и защита от перенапряжения и перегрузки по току. Уровень срабатывания защиты по току для L4981A задается при помощи внешнего резистора; для повышения точности в серии L4981B используется внешний делитель напряжения.
Ключевые особенности:
- Boost-ШИМ с коэффициентом мощности до 0,99;
- Искажение тока не более 5%;
- Универсальный вход;
- Мощный выходной каскад (биполярные и МОП-транзисторы);
- Защита от просадки напряжения с гистерезисом и программируемым порогом включения;
- Встроенный источник опорного напряжения с точностью 2% (доступен извне);
- Низкий ток запуска (~0,3мА);
- Система мягкого включения.
Серия L6561 является улучшенной версией PFC-контроллера L6560 (полностью с ним совместима). Основные новшества:
- Улучшенный аналоговый умножитель, позволяющий устройству работать в широком диапазоне входных напряжений (от 85 до 265В) с превосходными показателями коэффициента гармоник (THD);
- Стартовый ток уменьшен до нескольких миллиампер (~4мА);
- Добавлен вывод разрешения работы, гарантирующий низкое энергопотребление в режиме ожидания (stand by).
Ключевые возможности, воплощенные в смешанной технологии BCD:
- Ультранизкий стартовый ток (~50мкА);
- 1% встроенный источник опорного напряжения;
- Программируемая защита от перенапряжения;
- Токовый датчик без внешнего фильтра низких частот;
- Малый ток покоя.
Выходной каскад способен управлять силовыми МОП- или IGBT-ключами с токами управления до 400 мА. Микросхема работает в переходном режиме работы корректоров коэффициента мощности — Transition Mode (TM) — промежуточный режим между непрерывным (CCM) и прерывистым (DCM). L6561 оптимизирована для балластных схем питания газоразрядных ламп, сетевых адаптеров, импульсных источников питания.
Контроллер ККМ L6562A/L6562AT также работает в переходном режиме (TM) и совместим повыводно с предшественниками L6561 и L6562. Его высоколинейный умножитель имеет специальную схему, уменьшающую рассогласование входного переменного тока, что позволяет оперировать в широком диапазоне входных напряжений с низким коэффициентом гармоник при различных нагрузках. Выходное напряжение контролируется операционным усилителем с высокоточным источником опорного напряжения (до 1% точности).
L6562A/L6562AT в режиме покоя имеет потребление порядка 60 мкА и рабочий ток всего 5 мА. Наличие входа управления включением/выключением облегчает создание конечных устройств, отвечающих требованиям стандартов Blue Angel, EnergyStar, Energy2000 и ряда других.
Эффективная двухуровневая система защиты от перенапряжения срабатывает даже в случае возникновения перегрузки в момент запуска корректора или же в случае отрыва нагрузки при работе.
Выходной каскад способен обеспечить выходной ток до 600 мА и входной до 800 мА, что является достаточным для управления мощными силовыми MOSFETs или IGBT-ключами. В дополнение к указанным выше возможностям L6562A может оперировать в проприетарном режиме фиксированного времени выключения (Fixed-Off-Time) — рисунок 2.
Рис. 2. Временные диаграммы работы ККМ-контроллера в режиме Fixed-Off-Time
Серии ККМ-контроллеров L6563, L6563S, L6563H, L6564 построены по схеме типового корректора коэффициента мощности, работающего в режиме TM с рядом дополнительных возможностей.
L6563, L6563S имеют режим работы Tracking boost, двунаправленный вход упреждения напряжения, вход разрешения работы, прецизионный источник опорного напряжения (точность при 25°С в пределах 1…1,5%). Кроме того, в микросхему интегрированы: схемы защиты от перенапряжения с настраиваемым порогом, разрыва контура обратной связи (выключение микросхемы), насыщения индуктора (выключение микросхемы); программируемый детектор критического падения переменного напряжения. Максимальный ток потребления L6563х составляет не более 6 мА в активном режиме, стартовый ток менее 100 мкА.
Микросхема контроллера корректора
коэффициента мощности L6562A
Сферы применения ККМ-контроллера включают в себя:
- Импульсные блоки питания, отвечающие требованиям стандартов IEC61000-3-2 (телевизоры, мониторы, компьютеры, игровые консоли);
- AC/DC-преобразователи/зарядные устройства с мощностью до 400 Вт;
- Электронный балласт;
- Входной уровень серверов и веб-серверов.
Ключевыми особенностями L6562A являются:
- Проприетарное решение умножителя;
- Настраиваемые уровни защиты от перенапряжения;
- Ультранизкий стартовый ток- 30мкА;
- Низкий ток покоя- 2,5мА;
- Мощный выходной каскад для управления силовыми ключами- -600,800мА.
Микросхемы выпускаются в компактных восьмивыводных корпусах DIP-8 и SO-8. Структурная схема L6562A показана на рисунке 3.
Рис. 3. Структурная схема ККМ-контроллера L6562A
Инверсный вход усилителя ошибки разделяет функции вывода разрешения работы микросхемы. При напряжении на нем ниже 0,2 В он выключает микросхему, тем самым понижая ее энергопотребление, а при превышении порога в 0,45 В микросхема переходит в активный режим. Основное назначение данной функции — управление ККМ-контроллером, например, он может управляться следующим за ним ШИМ-контроллером преобразователя напряжения. Дополнительной возможностью, предоставляемой функцией выключения, является автоматическое отключение в случае замыкания на землю напряжения низкоомного резистора выходного делителя или обрыва цепи делителя.
Выходной сигнал усилителя ошибки поступает на его инверсный вход через компенсирующие цепи обратной связи. Фактически, работа данных цепей определяет стабильность выходного напряжения, высокий коэффициент мощности и низкий уровень гармоник.
После выпрямителя основное питающее напряжение поступает на вход умножителя через делитель напряжения и служит источником опорного синусоидального сигнала для токовой петли.
Напряжение с измерительного резистора в цепи силового ключа поступает на вход компаратора ШИМ, где сравнивается с опорным синусоидальным сигналом для определения момента размыкания ключа. Для снижения влияния импульсных помех аппаратно реализована задержка в 200 нс от фронта импульса. По отрицательному фронту импульса размагничивания индуктора происходит замыкание силового ключа.
Примером схемы включения L6562A может служить повышающий источник напряжения на 400 В (рисунок 4).
Рис. 4. Принципиальная электрическая схема широкодиапазонного сетевого источника питания (оценочная плата EVL6562A-TM-80W)
Вторым примером может служить применение L6562A в составе источника питания для светодиодных светильников (рисунок 5).
Рис. 5. Структурная схема источника питания для светодиодных светильников (отладочная плата EVL6562A-LED)
L6562A имеет специализированную схему, снижающую влияние переходных процессов в районе нулевого переменного входного напряжения, когда диоды в выпрямительном мосту еще закрыты, и ток через мост равен нулю. Для борьбы с данным эффектом встроенная схема заставляет ККМ-контроллер перекачивать больше энергии в момент пересечения нуля сетевым напряжением (увеличивается промежуток времени нахождения силового ключа в открытом состоянии). В результате уменьшается промежуток времени, в течение которого потребление энергии (тока) схемой недостаточно, и полностью разряжается фильтрующий конденсатор, стоящий после моста. Низкое значение опорного напряжения позволяет использовать более низкоомный резистор для измерения тока в цепи силового ключа, соответственно снижается и рассеиваемая на нем мощность (меньше рассеиваемой мощности ® меньше нагрев ® ниже требования к системе охлаждения и вентиляции). Низкие входные токи динамической защиты от перенапряжения допускают применение высокоомного верхнего резистора в делителе напряжения цепи обратной связи по напряжению без увеличения влияния шума. В итоге снижается ток потребления схемы в режиме ожидания (важно в связи с требованиями стандартов энергосбережения). В таблице 2 приведены основные параметры ККМ-контроллера L6562A.
Таблица 2. Основные эксплуатационные параметры L6562A
Параметр | Значение |
---|---|
Пороги включения/выключения, В | 12,5/10 |
Разброс значений порога выключения (макс), В | ± 0,5 |
Ток микросхемы перед запуском (макс), мкА | 60 |
Усиление умножителя | 0,38 |
Значение опорного напряжения, В | 1,08 |
Время реакции на изменение тока, нс | 175 |
Динамический ток переключения схемы OVP, мкА | 27 |
Пороги детектора нуля, выключения/срабатывания/удержания, В | 1,4/0,7/0 |
Пороги включения/выключения микросхемы, В | 0,45/0,2 |
Падение напряжения на внутреннем драйвере ключа, В | 2,2 |
Задержка относительно фронта импульса в датчике тока, нс | 200 |
Все это делает L6562A прекрасным недорогим решением для ИБП мощностью до 350 Вт, совместимых с требованиями стандартов EN61000-3-2.
Варианты применения и методика расчета типовых узлов для схем на основе L6562A/АТ приводятся в руководствах по применению; список основных документов приведен ниже.
AN3159: STEVAL-ILH005V2: 150 W HID electronic ballast — встраиваемый блок электронного балласта мощностью до 150 Вт.
AN2761: Solution for designing a transition mode PFC preregulator with the L6562A — примеры построения предварительного регулятора с ККМ в транзитивном режиме на основе L6562A.
AN2782: Solution for designing a 400 W fixed-off-time controlled PFC preregulator with the L6562A — Пример разработки 400-ваттного предварительного регулятора с ККМ на базе L6552A в режиме фиксированного времени во выключенном состоянии.
AN2928: Modified buck converter for LED applications — Модифицированный понижающий преобразователь для светодиодного освещения.
AN3256: Low-cost LED driver for an A19 lamp — Светодиодный драйвер для ламп А19 по низкой цене.
AN2983: Constant current inverse buck LED driver using L6562A — Светодиодный драйвер постоянного тока на L6562A.
AN2835: 70 W HID lamp ballast based on the L6569, L6385E and L6562A — Схема электронного балласта для газоразрядных ламп.
AN2755: 400 W FOT-controlled PFC pre-regulator with the L6562A — 400-ватный предварительный регулятор на базе L6562A в режиме fixed-off-time.
AN2838: 35 W wide-range high power factor flyback converter demonstration board using the L6562A — Демонстрационная плата 35-ваттного широкодиапазонного конвертера с высоким коэффициентом мощности на основе L6562A.
AN3111: 18 W single-stage offline LED driver — Автономный одноуровневый 18-ваттный светодиодный драйвер.
AN2711: 120 VAC input-Triac dimmable LED driver based on the L6562A — Тиристорный регулируемый светодиодный драйвер на L6562A мощностью 120 Вт.
Демонстрационные платы, предлагаемые STMicroelectronics, позволяют быстро разобраться с различными режимами работы микросхем, а также посмотреть, как поведут себя устройства в разных условиях эксплуатации. Кроме того, отладочные средства служат прототипами устройств. На момент написания статьи для ознакомления с L6562A предлагается следующий набор отладочных средств — таблица 3.
Таблица 3. Отладочные средства для L6562A
Плата | Внешний вид | Описание |
---|---|---|
STEVAL-ILL027V2 | 18-ваттный автономный светодиодный драйвер | |
EVL6562A-TM-80W | Оценочная плата 80-ваттного корректора коэффициента мощности работающего в режиме TM | |
STEVAL-ILL013V1 | Регулируемый автономный ККМ и светодиодный драйвер с регулировкой мощности на базе L6562A | |
EVL6562A-LED | Демонстрационная плата светодиодного драйвера постоянного тока на L6562A | |
STEVAL-ILL016V2 | Тиристорный автономный светодиодный драйвер на L6562AD и TSM1052 | |
STEVAL-ILL019V1 | 35-ваттный автономный светодиодный драйвер для четырехканальных светодиодных источников типа HB RGGB | |
STEVAL-ILL034V1 | Светодиодный драйвер для ламп типа A19 на базе L6562A (ориентировано на американский рынок) | |
EVL6562A-400W L6562A | Предварительный регулятор напряжения с корректором коэффициента мощности в режиме fixed-off-time |
ККМ-контроллеры STMicroelectronics серий L6563S/H
Помимо стандартных функций и возможностей контроллеры коэффициента мощности серии L6563S/H (рис. 6) имеют ряд опций, улучшающих характеристики конечных устройств, работающих на их основе.
Рис. 6. Структурная схема ККМ-контроллера L6563S
Среди отличительных особенностей:
- Возможность работы в режиме tracking boost;
- 1/V2-коррекция;
- Защита от перенапряжения, разрыва цепи обратной связи, насыщения индуктора.
Высоколинейный умножитель с коррекцией ступенчатых искажений основного тока позволяет микросхемам работать в широком диапазоне входного переменного напряжения при минимальном уровне нелинейных искажений даже при больших нагрузках.
Выходное напряжение контролируется усилителем ошибки и прецизионным источником напряжения (1% при 25°С). Стабильность контура обратной связи отслеживается упреждающей связью по напряжению (1/V2-коррекция), которая в данной микросхеме использует уникальную проприетарную технику, позволяющую существенно улучшить переходные процессы на линии при падениях или скачках сетевого напряжения (т.н. двунаправленная связь — «bidirectional»).
ККМ-контроллер L6563H имеет тот же набор функций, что и L6563/L6563S, с добавлением высоковольтного источника запуска. Эта возможность востребована в приложениях с жесткими требованиями по энергосбережению, а также в тех случаях, когда контроллер ККМ работает в режиме мастера.
Дополнительно L6563H имеет возможность работы в режиме отслеживания повышения (tracking boost operation) — выходное напряжение изменяется, реагируя на изменения сетевого напряжения.
L6563H может быть использован в составе блоков питания мощностью до 400 Вт при соответствии требованиям стандартов EN61000-3-2, JEITA-MITI.
Микросхема L6564 является более компактной версией L6563S в корпусе SSOP-10 — имеет тот же драйвер, источник опорного напряжения и систему управления. В серии L6563A отсутствует защита от насыщения индуктора.
Так же, как и L6562A, ККМ-контроллеры L6263x могут работать в режиме фиксированного времени выключения (Fixed-Off-Time). Кроме того, выводы состояния контроллера позволяют управлять ШИМ-контроллером DC/DC-преобразователя, питаемого предварительным регулятором ККМ-контроллера при нештатных ситуациях (разрыв обратной связи, насыщение индуктора, перегрузка). С другой стороны, возможно отключение ККМ-контроллера в том случае, если DC/DC-конвертор работает на малую нагрузку. В отличие от серий L6562x имеются отдельные входы управления контроллером, что делает управление достаточно гибким.
В рекомендациях по применению описываются различные аспекты применения L6563A/H, типовые схемы включения, расчет типовых цепей и узлов.
AN3027: How to design a transition-mode PFC pre-regulator with the L6563S and L6563H — Разработка ТМ ККМ-контроллера с помощью L6563S and L6563H.
AN3203: EVL250W-ATX80PL: 250W ATX SMPS demonstration board — Демонстрационная плата ATX блока питания на 250 ВТ.
AN3180: A 200 W ripple-free input current PFC pre-regulator with the L6563S 1 — Корректор коэффициента мощности на L6563L свободный от шума входного тока.
AN2994: 400 W FOT-controlled PFC pre-regulator with the L6563S — 400-ваттный ККМ-контроллер на L6563S в режиме fixed-off-time.
AN3119: 250 W transition-mode PFC pre-regulator with the new L6563S — 250-ваттный ККМ-контроллер на L6563S в режиме transition-mode.
AN2941: 19 V — 75 W SMPS compliant with latest ENERGY STARR criteria using the L6563S and the L6566A — Импульсный блок питания с выходным напряжением 19 В мощностью 75 Вт совместимый с требованиями новейшего стандарта Energy Starr.
AN3065: 100 W transition-mode PFC pre-regulator with the L6563S — 100-ваттный ККМ-контроллер на L6563S в режиме transition-mode.
Демонстрационные платы для L6563S/ L6564 показаны в таблице 4.
Таблица 4. Отладочные средства для L6563S/ L6564
Наименование | Внешний вид | Описание |
---|---|---|
EVL250W-ATX80PL | Плата ATX блока питания на 250 Вт | |
EVL6563S-250W | 250-ваттный предварительный регулятор с ККМ на базе L6563S в режиме TM | |
EVL6563S-100W | 100-ваттный предварительный регулятор с ККМ на базе L6563S в режиме TM | |
EVL6563S-200ZRC | Корректор коэффициента мощности на L6563S свободный от шума входного тока (200 Вт) | |
EVL185W-LEDTV | Блок питания мощностью 185 Вт для LED-телевизоров с корректором коэффициента мощности, режимом ожидания на базе L6564, L6599A, и VIPER27L |
Дополнительно по запросу разработчика могут быть предоставлены программные продукты для автоматизации разработки и расчета схем на L6563S, L6564 в режимах TM и fixed-off-time.
Рекомендации по выбору компонентов
для ККМ-контроллера
Для корректной работы микросхем ККМ-контроллеров, стабильной работы прибора и его соответствия требованиям стандартов необходимо выбрать подходящий режим работы.
Как правило, для мощностей меньше 200 Вт ККМ-контроллеры L6562A/3S/3H/4 включаются в режиме TM. Для приборов, оперирующих мощностями более 200 Вт, применяется микросхема L4981 (ее режим работы CCM). Возможно также применение серий L6562A/3S/3H/4 в режимах Fixed-Off-Time или Reeple-Steering.
Силовой MOSFET-ключ и выпрямительный диод для силовой части корректора мощности или источника питания можно легко выбрать из продукции STMicroelectronics.
Для устройств малой мощности (до 100 Вт) подходят силовые ключи семейства SuperMesh3, например, серии STx10N62K3. Для средней мощности (100…1000 Вт) — семейство MDMesh2 серии STx25NM50M. И для мощных источников, работающих с мощностями более 1 кВт — семейство MDMesh5 серии STP42N65M5.
В качестве выпрямительных рекомендуются: диоды на карбиде кремния, обладающие наименьшей емкостью перехода (серии STPSCxx06); диоды семейства Turbo 2, например, STTHxxR06; а также тандемные диоды серии STTH806DTI.
Несмотря на сравнительно небольшой по количеству серий ассортимент предлагаемых ККМ-контроллеров, продукция STMicroelectronics, благодаря ряду удачных схемотехнических решений и разнообразию возможных режимов работы, перекрывает практически весь спектр приложений импульсных преобразователей энергии — повышающие/понижающие блоки питания, драйверы светодиодных светильников, корректоры коэффициента мощности.
Кроме того, для всего спектра приложений осуществляется информационная и техническая поддержка разработчика — от рекомендаций по применению и программ для расчета блоков и узлов до отладочных и демонстрационных плат.
Получение технической информации, заказ образцов, поставка — e-mail: mcu.vesti@compel.ru
Наши информационные каналы
Рубрика: статья Метки: AC-DC, ККМ
Проблемы отбора мощности классическим выпрямителем
Основной проблемой классического выпрямителя с накопительным конденсатором, работающего от синусоидального или другого непрямоугольного напряжения, является тот факт, что отбор энергии от сети происходит только в те моменты времени, когда напряжение в ней больше, чем напряжение на накопительном конденсаторе. Действительно, конденсатор может заряжаться только если к нему приложено напряжение, большее чем то, до которого он уже заряжен.
Причем в те моменты, когда напряжение сети становится больше напряжения конденсатора, ток зарядки очень велик, а все остальное время он нулевой. Получается, что, например, для синусоидального напряжения питания, наблюдаются всплески тока при достижении напряжением амплитудных значений. Если Ваше устройство потребляет небольшую мощность, то это можно стерпеть. Но для нагрузки, скажем, 1 кВт 220В всплески тока могут достигать 100 А. Что совершенно неприемлемо.
Вашему вниманию подборки материалов:
Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам
Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам
Государственные стандарты на силовые устройства запрещают их изготовление и продажу, если не обеспечивается равномерный отбор мощности.
Чтобы решить эту проблему, применяют корректоры коэффициента мощности.
Простейший корректор коэффициента мощности
Устройство отличается от классического выпрямителя тем, что зарядка накопительного конденсатора осуществляется через дроссель. Электрический ток через дроссель не может измениться моментально. Соответственно, дроссель как бы усредняет ток зарядки. При правильном выборе дросселя, ток зарядки будет идти постоянно, вне зависимости от текущего значения напряжения. Мощность, соответственно, от сети тоже будет отбираться постоянно, а не только при пиках напряжения. Сила тока не будет иметь ярко выраженных всплесков. Все поставленные задачи решены.
Для нормального функционирования схемы нужен дроссель, который не будет насыщаться при максимально возможном потребляемом токе. Индуктивность дросселя должна быть такой, чтобы пульсации тока не превышали 1А, чтобы соответствовать государственным стандартам. Для 50 Гц индуктивность составляет 3 Гн. Для нагрузки 1 кВт такой дроссель, конечно, можно изготовить, но весить он будет более 50 кг, а стоить больше 10 000 рублей с учетом современной цены меди.
Импульсный корректор коэффициента мощности
Силовая импульсная электроника дает другое решение.
Это классический повышающий преобразователь напряжения. Конденсатор, подключенный к мосту, выбирается небольшой емкости, только для фильтрации высокочастотных импульсов. Напряжение на нем пульсирует. Повышающий преобразователь преобразует пульсирующее напряжение в постоянное на конденсаторе C5 за счет ШИМ модуляции. При фиксированном выходном напряжении входной ток пропорционален входному напряжению, то есть изменяется плавно по синусоидальному закону, без скачков и всплесков.
Устройство рассчитано на выходную мощность 500 Вт. Как увеличить мощность устройства, читайте по ссылке.
Ф — фильтр импульсных помех. Обычно используется уже готовый покупной.
М — Мост на нужное напряжение и ток.
C6 — 1 мкФ 400 В.
C5 — 470 мкФ 400 В электролитический.
VD3 — быстродействующий диод, рассчитанный на напряжение 1000 В и ток, который будет потреблять Ваша нагрузка.
R8 — 2 МОм, R9 — 2 кОм, подстроечный, R10 — 2 кОм.
VT2 — IRFP450.
R7 — 10 Ом.
R6 — 0.1 Ом.
R4 — 300 кОм, R5 — 30 кОм.
R3 — 100 кОм, C4 — 1 нФ. Эти элементы задают частоту работы ШИМ контроллера. Подбираем их так, чтобы частота составила 30 кГц.
C3 — 0.05 мкФ. Это частотная коррекция цепи обратной связи. Если выходное напряжение начинает пульсировать или недостаточно быстро устанавливается при изменении тока нагрузки, то эту емкость надо подобрать.
VD2 — HER208.
C1 — 1000 мкФ. C2 — 4700 мкФ.
VD1 — Стабилитрон 15 В. R1 — 300 кОм 0.5 Вт.
VT1 — Высоковольтный транзистор на 400 вольт. Это схема запуска, через этот транзистор ток идет только в начале работы. После появления ЭДС на обмотке L2, транзистор закрывается. Так что рассеиваемая мощность на этом транзисторе невелика.
D2 — интегральный стабилизатор напряжения (КРЕН) на 12В.
D1 — Интегральный ШИМ контроллер. Подойдет 1156ЕУ3 или его импортный аналог UC3823.
Добавление от 27.02.2013 Иностранный производитель контроллеров Texas Instruments преподнес нам удивительно приятный сюрприз. Появились микросхемы UC3823A и UC3823B. У этих контроллеров функции выводов немного не такие, как у UC3823. В схемах для UC3823 они работать не будут. Вывод 11 теперь приобрел совсем другие функции. Чтобы в описанной схеме применить контроллеры с буквенными индексами A и B, нужно вдвое увеличить резистор R6, исключить резисторы R4 и R5, подвесить (никуда не подключать) ножку 11. Что касается российских аналогов, то нам читатели пишут, что в разных партиях микросхем разводка разная (что особенно приятно), хотя мы пока новой разводки не встречали.
L1 — дроссель 2 мГн, рассчитанный на ток 3 А. Можно намотать на сердечнике Ш16х20 четырьмя проводами 0.5 мм, сложенными вместе, 130 витков, зазор 3 мм. L2 — 8 витков провода 0.2 мм.
Смотрите также онлайн расчет дросселя. В форме задайте амплитуду пульсаций тока равной нулю, чтобы получить нужные нам параметры.
Ознакомьтесь с порядком расчета теплоотвода силового полевого транзистора.
Выходное напряжение формируется на конденсаторе C5.
Комментарий: В параметрах дросселя была ошибка, на которую нам указали читатели. Теперь она исправлена. Кроме того, для повышения стабильности работы схемы может быть полезно ограничить максимальное время открытия силового полевого транзистора. Для этого устанавливаем подстроечный резистор между 16 ножкой микросхемы и минусовым проводом питания, а движок соединяем с ножкой 8. (Как, например, на этой схеме.) Подстраивая этот резистор, можно регулировать максимальную скважность импульсов от ШИМ-контроллера.
:: (в начало статьи)
1 | 2 |
Оглавление :: ПоискТехника безопасности :: Помощь
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.
Можно ли предположить, что такой корректор мощности (электронный) позволяет экономить энергию потребляемую из эл. сети? Если да, то будет ли это зависеть напрямую от ёмкосли конденсатора С5? Уточнение: я имею ввиду условия для активной нагрузки, которой безразлично постянное или переменное напряжение. С уважением, Сергей. Читать ответ…
Здравствуйте! Подскажите пожалуйста как рассчитать индуктивность дросселя и ёмкость эл. конденсатора для ‘простейшего корректора коэффициента мощности’ на другую частоту. Например на 100, 200, 300 кГц. Спасибо! Читать ответ…
Здравствуйте! Можно ли обмотку l2 дополнительно использовать для питания: драйверов ir2101 и гальванически связанного с ними контроллера инвертора трехфазного асинхронного двигателя. Питание драйверов верхних ключей бутстрепное. С уважением, Борис Читать ответ…
Здравствуйте !Подскажите пожалуйста: можно ли получить выходное напряжение ККМ 400в, и что для этого необходимо сделать? С уважением Борис Читать ответ…
Здравствуйте! В статье ‘Импульсный корректор коэффициента мощности’ нет достаточной информации о сердечнике дросселя L1. Не могли бы Вы указать материал сердечника, а также его типоразмер, для варианта корректора, мощностью до 100 ватт. С уважением, Гоша. Читать ответ…
Еще статьи
Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. …
Схема преобразователя однофазного напряжения в трехфазное….
Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо…
Схема импульсного блока питания. Расчет на разные напряжения и токи….
Полумостовой импульсный стабилизированный преобразователь напряжения, …
Как работает полу-мостовой стабилизатор напряжения. Где он применяется. Описание…
ШИМ, PWM контроллер. Усилитель ошибки. Частота. Инвертирующий, неинвер…
ШИМ контроллер. Синхронизация. Обратная связь. Задание частоты….
устройство для резервного, аварийного, запасного питания котла, циркул…
У меня установлен газовый отопительный турбо котел, требующий электропитания. Кр…
Режим непрерывного / прерывного (прерывистого) тока через катушку инду…
Сравнение режимов непрерывного и прерывного тока. Онлайн расчет для повышающей, …
Понижающий импульсный преобразователь напряжения, источник питания. Пр…
Понижение напряжения постоянного тока. Как работает понижающий преобразователь н…
Сигналы — математические (арифметические) операции. Сложение, суммиров…
Схемы для выполнения арифметических операций над сигналами. Суммирование, вычита…
Корректор коэффициента мощности своими руками
Приветствую, Самоделкины!
Сейчас мы вместе с Романом, автором YouTube канала «Open Frime TV», соберем очень интересное устройство, а называется оно корректор коэффициента мощности, сокращенно ККМ.
Все началось с того, что в сети у автора стало проваливаться напряжение до 150В и это создавало ряд проблем. Но самое главное из них было то, что рабочий компьютер попросту не хотел включаться, а он, к сведению, был включен через стабилизатор напряжения.
Данную проблему надо решать, но как? Первая идея была собрать обыкновенный повышающий блок питания со стабилизацией и просто подключить его на вход компьютерного блока. В принципе, автор так и хотел сделать и даже уже начал готовить печатную плату, но потом поговорил с одним умным человеком, и он посоветовал сделать корректор коэффициента мощности. Идея хорошая, но перекопав интернет в поисках информации, к сожалению, ничего не было найдено. На всеми любимом Ютубе были только объяснения как это работает, но ни одного готового решения. А в Гугле автор нашел всего пару статей, из которых и подчерпнул нужную информацию, и теперь готов ею поделиться.
Для начала пару слов про саму работу устройства. Давайте разберем как работает импульсный блок, по крайней мере его входная часть. Итак, это диодный мост и конденсатор:
Есть 2 ситуации:
1) На выходе нету нагрузки. В таком случае в начальный момент времени конденсатор заряжается до амплитудного значения сети. А так как ему некуда девать энергию, то на выходе будет прямая линия.
2) Вторая ситуация: подключили нагрузку, а точнее наш импульсник. В таком случае в начальный момент времени кондер зарядился до амплитудного значения, а когда полуволна синусоиды пошла на спад, кондёр начал разряжаться через нагрузку, но разряжается он не до нуля, а до определенного значения. Потом идет новая полуволна и кондёр опять подзаряжается.
В итоге получается такая ситуация, что кондер подзаряжается только маленький промежуток времени. Именно в этот момент идет максимальный бросок тока, который превышает номинальный в несколько раз. Как вы уже догадались — это плохо. Какой же выход из данной ситуации? Все очень просто. Необходимо поставить повышающий преобразователь, который будет подзаряжать кондер почти на всем участке полуволны.
Этот преобразователь и есть наш корректор коэффициента мощности. Каким же образом это работает? Грубо говоря, он разбивает всю полуволну на мелкие участки, которые соответствуют частоте его работы, и на каждом участке повышает напряжение до заданной величины.
Таким образом заряд основного конденсатора происходит всю полуволну, тем самым убирая броски тока, и наш импульсник выглядит для сети, как чисто активная нагрузка.
Также есть и другая особенность корректора, это то, что он может нормально работать даже при входящем напряжение 90 В. Ему то все равно нужно повышать напряжение, будь оно с амплитудой 310 В или же в 150 В.
Отлично, мы вкратце ознакомились с принципом работы данного устройства, а теперь давайте перейдем к рассмотрению схемы.
Она взята из даташита, ничего своего автор в нее не вносил. Как видим, элементов немного, это хорошо, легче будет развести печатную плату.
Также стоит рассмотреть важные моменты схемы: первое — некоторые номиналы элементов будут отличаться для разных мощностей, это нужно учитывать; второе — это выходное напряжение. Если вы делаете ККМ для комповского блока питания, то нужно выбирать напряжение в 310В. А если рассчитываете блок с нуля, то лучше взять напряжение в районе 380В.
Величину выходного напряжения регулируют делителем напряжения на вот этих резисторах:
Из такого расчета, чтобы при номинальном выходном напряжении на делителе было 2,5В. Как уже было сказано раньше, для разных мощностей нужны разные элементы. Для мощности в 100Вт нужен транзистор 10n60, а для 300Вт уже 28n60. Но лучше взять с запасом 35n60, такой точно выдержит нужную нагрузку.
Идем дальше. Диод.
Это должен быть ultrafast на напряжение не менее 600В и ток 5 и выше ампер. Важную роль тут играет выходной конденсатор. Грубо его можно рассчитать из соображений, 1мкФ на 1Вт выходной мощности.
Остался дроссель, его намотку рассмотрим позже.
Переходим к печатной плате. Она получилась немаленькой, но это все из-за больших размеров конденсатора и дросселя.
Как видим, автор развел плату без единой перемычки и все на вводных деталях для удобства повторения. Больше про печатку сказать ничего, идем травить плату.
Вытравили плату, просверлили отверстия на сверлильном станке и теперь приступаем к запаиванию запчастей.
Единственное, для теста автор заменил транзистор 35n60 на 20n60, так как он дешевле и не так будет обидно в случае чего. В качестве радиатора применен вот такой алюминиевый профиль:
Он имеет большие размеры и сможет с легкостью охладить силовые элементы. Теперь настало время изготовить дроссель. Это самая сложная часть схемы. В его расчете нам поможет программа:
В ней вводим все необходимые данные и на выходе получаем параметры намотки. Сердечник в данном случае будет такой:
Можно было и меньший, но тогда придётся мотать больше витков. Также не забывайте поставить галочку возле выбора провода, автор забыл и поэтому дроссель мотал 2 раза.
Также у дросселя есть еще вторая обмотка. Ее делаем из соотношения 7:1. При 58 витках вторичка будет 8 витков. У автора при 74-х витках получилось 10 витков. Диаметр провода тут берем от 0,4 до 0,6 мм. Что касается фазировки, то тут все очень просто. Выводы дросселя, как они есть, устанавливаются на плату, главное не перепутать силовую и второстепенную обмотку. Также на схеме есть синфазный дроссель, его мотаем на кольце диаметром 20-25 мм и проницаемостью 2000. Количество витков 8-12, диаметр провода от 0,8 до 1,2 мм.
На этом все. Можно производить первое включение. Так как это не импульсный блок, то лампу накаливания в разрыв ставить нельзя, но автор все же поставил, только киловаттную, просто не хотелось в случае КЗ иди на улицу к щитку и включать пробки.
После включения схема заработала. В нагрузку автор повесил 2 лампочки накаливания на 100Вт включенных последовательно.
Как видим при низком входном напряжении на выходе получаем напряжение в районе 315В. Теперь нужно посмотреть, как поведет себя схема с импульсником. Для этого берем блок питания от компа и разбираем его. Нам необходимо посмотреть есть ли в нем варистор, если есть, убрать, так как он рассчитан на 275В и сработает при подаче 310В. Теперь включим этот блок напрямую в сеть и посмотрим какой будет косинус.
Хорошо, а теперь подключаем через корректор. Подаем питание на те же выводы где была переменка, чтобы не мучиться и не выпаивать диодный мост. Производим включение.
Теперь пройдемся по всем показаниям энергометра. Больше всего нас интересует косинус ф. Как видим он колеблется в районе 95. Ну что, вполне достойный результат. Теперь подкинем на блок питания нагрузку — нихромовую спираль. Мощность потребления примерно 160Вт.
Отлично, а что же происходит с косинусом? А он в это время начинает стремиться к единице, но при отключении нагрузки падает. Это связано с разрядом конденсатора. По поводу нагрева. Радиатор оказался очень большим и на протяжении получаса не нагрелся. А вот дроссель ощутимо нагрелся градусов до 65-70, поэтому вентилятор желательно устанавливать.
Ну а на этом все. Благодарю за внимание. До новых встреч!
Видео:
Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .
Добавить комментарий