Водородная топливная ячейка

Содержание

Топливные элементы: виды и принцип работы

Экология познания.Наука и техника: Водородная энергетика является одной из самых высокоэффективных отраслей, а топливные элементы позволяют ей оставаться на передовой инновационных технологий.

Топливный элемент – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Опять же, подобно батарее, топливный элементвключает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха. Правильный термин для описания работающего топливного элемента – это система элементов, так как для полноценной работы требуется наличие некоторых вспомогательных систем.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр.,топливные элементы не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибраций. Топливные элементы вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе топливных элементов являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы собираются в сборки, а затем в отдельные функциональные модули.

Принцип работы топливных элементов

Топливные элементы вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.

Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород — на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода. На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H2 => 4H+ + 4e-
Реакция на катоде: O2 + 4H+ + 4e- => 2H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

Типы топливных элементов

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливной элементы зависит от его применения.Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород.

Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять «внутреннее преобразование» топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы на расплаве карбоната (РКТЭ).

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников. Данный процесс был разработан в середине 1960-х гг. С того времени была улучшена технология производства, рабочие показатели и надежность.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO32-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO32- + H2 => H2O + CO2 + 2e-
Реакция на катоде: CO2 + 1/2O2 + 2e- => CO32-
Общая реакция элемента: H2(g) + 1/2O2(g) + CO2(катод) => H2O(g) + CO2(анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода, «отравлению», и пр.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 2,8 МВт. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы на основе фосфорной кислоты (ФКТЭ).

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования. Данный процесс был разработан в середине 1960-х гг., испытания проводились с 1970-х гг. С того времени была увеличена стабильность, рабочие показатели и снижена стоимость.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H3PO4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов (МОПТЭ), в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H2 => 4H+ + 4e-
Реакция на катоде: O2(g) + 4H+ + 4e- => 2H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 400 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы с мембраной обмена протонов (МОПТЭ)

Топливные элементы с мембраной обмена протонов считаются самым лучшим типом топливных элементов для генерации питания транспортных средств, которое способно заменить бензиновые и дизельные двигатели внутреннего сгорания. Эти топливные элементы были впервые использованы НАСА для программы «Джемини». Сегодня разрабатываются и демонстрируются установки на МОПТЭ мощностью от 1Вт до 2 кВт.

В качестве электролита в этих топливных элементах используется твердая полимерная мембрана (тонкая пластмассовая пленка). При пропитывании водой этот полимер пропускает протоны, но не проводит электроны.

Топливом является водород, а носителем заряда – ион водорода (протон). На аноде молекула водорода разделяется на ион водорода (протон) и электроны. Ионы водорода проходят сквозь электролит к катоду, а электроны перемещаются по внешнему кругу и производят электрическую энергию. Кислород, который берется из воздуха, подается к катоду и соединяется с электронами и ионами водорода, образуя воду. На электродах происходят следующие реакции:

Реакция на аноде: 2H2 + 4OH- => 4H2O + 4e-
Реакция на катоде: O2 + 2H2O + 4e- => 4OH-
Общая реакция элемента: 2H2 + O2 => 2H2O

По сравнению с другими типами топливных элементов, топливные элементы с мембраной обмена протонов производят больше энергии при заданном объеме или весе топливного элемента. Эта особенность позволяет им быть компактными и легкими. К тому же, рабочая температура – менее 100°C, что позволяет быстро начать эксплуатацию. Эти характеристики, а также возможность быстро изменить выход энергии – лишь некоторые черты, которые делают эти топливные элементы первым кандидатом для использования в транспортных средствах.

Другим преимуществом является то, что электролитом выступает твердое, а не жидкое, вещество. Удержать газы на катоде и аноде легче с использованием твердого электролита, и поэтому такие топливные элементы более дешевы для производства. По сравнению с другими электролитами, при применении твердого электролита не возникает таких трудностей, как ориентация, возникает меньше проблем из-за появления коррозии, что ведет к большей долговечности элемента и его компонентов.

Твердооксидные топливные элементы (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О2-). Технология использования твердооксидных топливных элементов развивается с конца 1950-х гг. и имеет две конфигурации: плоскостную и трубчатую.

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О2-). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H2 + 2O2- => 2H2O + 4e-
Реакция на катоде: O2 + 4e- => 2O2-
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60%. Помимо этого, высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 70%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH3OH) окисляется при наличии воды на аноде с выделением СО2, ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH3OH + H2O => CO2 + 6H+ + 6e-
Реакция на катоде: 3/2O2 + 6H+ + 6e- => 3H2O
Общая реакция элемента: CH3OH + 3/2O2 => CO2 + 2H2O

Разработка данных топливных элементов была начата в начале 1990-х гг. После создания улучшенных катализаторов и, благодаря другим недавним нововведениям, была увеличена удельная мощность и КПД до 40%.

Были проведены испытания данных элементов в температурном диапазоне 50-120°C. Благодаря низким рабочим температурам и отсутствию необходимости использования преобразователя, топливные элементы с прямым окислением метанола являются лучшим кандидатом для применения как в мобильных телефонах и других товарах широкого потребления, так и в двигателях автомобилей. Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы (ЩТЭ)

Щелочные топливные элементы (ЩТЭ) – одна из наиболее изученных технологий, используемая с середины 1960-х гг. агентством НАСА в программах «Аполлон» и «Спейс Шаттл». На борту этих космических кораблей топливные элементы производят электрическую энергию и питьевую воду. Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°С до 220°С. Носителем заряда в ЩТЭ является гидроксильный ион (ОН-), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H2 + 4OH- => 4H2O + 4e-
Реакция на катоде: O2 + 2H2O + 4e- => 4OH-
Общая реакция системы: 2H2 + O2 => 2H2O

Достоинством ЩТЭ является то, что эти топливные элементы — самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. Кроме того, ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов — такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO2, который может содержаться в топливе или воздухе. CO2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H2O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H2O+ (протон, красный) присоединяется к молекуле воды. Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°С.

Твердокислотные топливные элементы (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO4) не содержит воды. Рабочая температура поэтому составляет 100-300°С. Вращение окси анионов SO42-позволяет протонам (красный) перемещаться так, как показано на рисунке.

Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.опубликовано econet.ru

Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Большинство видов углеводородного топлива Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные установки
ЩТЭ 50–200°C 40-65% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Новый метановый топливный элемент решил проблему температуры

Исследователи из Технологического института Джорджии разработали новый топливный элемент, работающий на дешевом горючем при температурах, соответствующих условиям в автомобильных двигателях.

Новая система, описанная в Nature Energy, может значительно снизить затраты на материалы, сообщает futurity.org. Ученые показали, как они переосмыслили концепцию ТЭ с помощью нового топливного катализатора. Материал обходится без дорогого водородного горючего, создавая собственный дешевый и готовый к использованию метан. Исследователи также значительно снизили рабочие температуры кипения, характерные для таких систем.

Метановым ТЭ обычно требуется 750-1000°С, чтобы функционировать. Новой системе нужно всего 500°С, что даже ниже температуры выхлопных газов автомобилей (около 600°С). Изменения могут привести к значительному удешевлению технологии и повышению ее рентабельности. Авторы уверены, что инженеры будут создавать доступные электромобили на основе новых ТЭ, чего не удавалось добиться с метановыми установками в прошлом.

«Наша система использует дешевую нержавеющую сталь для получения соединительных элементов, — сказал руководитель исследования, профессор Мейлин Лю. – Ни один металл не выдерживает температуры выше 750°С без окисления. Так что нам было сложно подобрать материалы, которые не были бы очень дорогими или хрупкими».

«Снижение до 500°С – настоящая сенсация, — сказал Бен деГли, сотрудник лаборатории Лю и один из первых авторов работы. – Такие условия очень упрощают создание соединительных элементов».

Новая система также устраняет потребность в основном вспомогательном устройстве, паровом реформере, необходимом для превращения метана и воды в водородное топливо.

Исследователи сосредоточились на твердооксидном ТЭ. Система выглядит перспективно для рынка, так как может использовать разные виды горючего. Для более эффективного превращения метана в водород ученые создали катализатор из церия, никеля и рутения (Ce0.9Ni0.05Ru0.05O2) или CNR. Под действием тепла Ni химически раскалывает молекулы метана, Ru – воду. В результате получается водород и оксид углерода, и оба используются как топливо. Они проходят дальнейшие каталитические слои, превращающие материалы в положительно заряженные ионы. Последние передают ток на анод. Здесь кислород поглощает электроны и замыкает цепь, превращаясь в ионы. Вместе с ионизированным водородом O2 выходит из системы в виде водяного конденсата. СО и ионы кислорода превращаются в чистый углекислый газ, который можно задержать.

CNR, разработанный при участии Университета Канзаса, покрывает анод, вдвое увеличивая защиту от разрушения и продлевая жизнь ТЭ. Эффективность второго электрода команда Лю повысила с помощью нановолоконных катодов, разработанных в прошлом исследовании.

Сайт о нанотехнологиях #1 в России

Опубликовано ssu-filippov в 19 июля, 2012 — 23:07

Тихоокеанская северо-западная национальная лаборатория (США) разработала высокоэффективный компактный твердооксидный топливный элемент (ТТЭ), использующий для повышения КПД паровой риформинг в микроканальном теплообменнике.

Обычные топливные элементы требуют дорогого платинового катализатора, легко отравляемого угарным газом и серой. Поэтому в них нужно использовать чистый водород, а не радикально более дешёвый метан (или биогаз).

Твердооксидные топливные элементы на основе диоксида циркония имеют катод, анод и даже электролит из керамики, поэтому способны работать при 700–1 000 ˚С — и без дорогой и чувствительной к отравлению платины.

Рис. 1. Твердооксидный топливный элемент с внешним паровым риформингом значительно увеличил свой КПД. (Здесь и ниже иллюстрации Pacific Northwest National Laboratory).

Но у них есть другая проблема: для выхода на рабочую температуру топливо и окислитель (кислород воздуха) надо разогреть до 700 ˚С, что требует затрат энергии. Можно использовать подогрев уже горячими продуктами реакции, выходящими из топливного элемента, но если делать это в самом топливном элементе, то произойдёт неравномерный нагрев его участков и растрескивание составляющих его керамических пластин.

Поэтому разработчики из Тихоокеанской северо-западной национальной лаборатории применили внешний микроканальный теплообменник, диаметр теплообменных каналов которого не больше обычной скрепки.

Помимо подогрева кислорода и природного газа продуктами реакции, теплообменник дополнительно проходит паровой риформинг: вода и углекислый газ (продукты реакции), реагируя с входящим метаном и кислородом при высокой температуре, дают водород и угарный газ, которые также реагируют в топливном элементе, играя роль топлива.

В результате в экспериментах на одном и том же топливном элементе удалось добиться нетто-КПД (с учётом затрат электроэнергии из сети на первоначальный разогрев ТТЭ) в 48,2% при мощности в 2,2 кВт и в 56,6% (!) — при мощности в 1,7 кВт.

До сих пор максимальный КПД твердооксидных топливных элементов не превышал 50%, поэтому речь идёт о весьма значительном достижении.

Рис. 2. Сам топливный элемент невелик: рядом для сравнения помещена разменная монета, призванная продемонстрировать компактность устройства. Да и оболочка теплообменника (слева внизу) не больше носового платка.

Почему мощность экспериментального ТТЭ была выбрана столь небольшой, не более 2,2 кВт?

По мнению разработчиков, источник именно такой мощности нужен средней американской семье для распределённого сценария производства энергии.

Множество домовладений в США имеют доступ к природному газу, служащему основным источником энергии и в большой американской энергетике. Однако КПД даже самых современных парогазовых установок не превышает 60%, в то время как у ТТЭ, по словам исследователей, 60% может быть достигнуто уже в ближайшее время, и это притом, что при распределённом сценарии использования нет потерь электроэнергии на передачу по проводам на сотни и тысячи километров.

Кроме того, если в большой энергетике $1 400 на киловатт-час установленной мощности строящейся ТЭС считается хорошим показателем, то твердооксидные топливные элементы уже сейчас имеют чуть меньшую себестоимость, а в ближайшее время могут выйти на показатель менее $1 000 за кВт•ч мощности.

Результаты проведённой работы опубликованы в Journal of Power Sources.

Топливный элемент

Метанольный топливный элемент в Mercedes Benz Necar 2

Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасённого в гальваническом элементе или аккумуляторе.

Водородные топливные элементы и воздушно-алюминиевые электрохимические генераторы осуществляют превращение химической энергии топлива (водорода или алюминия) в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию.

Естественным топливным элементом является митохондрия живой клетки. Митохондрии перерабатывают органическое «горючее» — пируваты и жирные кислоты, синтезируя АТФ — универсальный источник энергии для всех биохимических процессов в живых организмах, одновременно создавая разность электрических потенциалов на своей внутренней мембране. Однако копирование этого процесса для получения электроэнергии в промышленных масштабах затруднительно, так как протонные помпы митохондрий имеют белковую природу.

Устройство ТЭ

Топливные элементы — это электрохимические устройства, которые теоретически могут иметь высокий коэффициент преобразования химической энергии в электрическую.

Принцип разделения потоков горючего и окислителя

Обычно в низкотемпературных топливных элементах используются: водород со стороны анода и кислород на стороне катода (водородный элемент) или метанол и кислород воздуха. В отличие от топливных элементов, одноразовые гальванические элементы и аккумуляторы содержат расходуемые твёрдые или жидкие реагенты, масса которых ограничена объёмом батарей, и, когда электрохимическая реакция прекращается, они должны быть заменены на новые либо электрически перезаряжены, чтобы запустить обратную химическую реакцию, или по крайней мере в них нужно поменять израсходованные электроды и загрязнённый электролит. В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в неё реагенты и сохраняется реакционная способность компонентов самого топливного элемента, чаще всего определяемая их «отравлением» побочными продуктами недостаточно чистых исходных веществ.

Пример водородно-кислородного топливного элемента

Водородно-кислородный топливный элемент с протонообменной мембраной (например, «с полимерным электролитом») содержит протонопроводящую полимерную мембрану, которая разделяет два электрода — анод и катод. Каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесённым катализатором — платиной или сплавом платиноидов и др. композиции.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.

На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Топливные элементы не могут хранить электрическую энергию, как гальванические или аккумуляторные батареи, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами, компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода) образуют устройство для хранения энергии.

Мембрана

Мембрана обеспечивает проводимость протонов, но не электронов. Она может быть полимерной (Нафион (Nafion), полибензимидазол и др.) или керамической (оксидной и др.). Впрочем, существуют ТЭ и без мембраны.

Анодные и катодные материалы и катализаторы

Анод и катод, как правило, — это просто проводящий катализатор — платина, нанесенная на высокоразвитую углеродную поверхность.

Типы топливных элементов

Основные типы топливных элементов

Тип топливного элемента Реакция на аноде Электролит Реакция на катоде Температура, °С
Щелочной ТЭ 2 H2 + 4 OH− → 2 H2O + 4 e− Раствор КОН O 2 + 2 H2O + 4 e− → 4 OH− 200
ТЭ с протонно-обменной мембраной 2 H2 → 4 H+ + 4 e− Протоннообменная мембрана O2 + 4 H+ + 4 e− → 2 H2O 80
Метанольный ТЭ 2 CH3OH + 2 H2O → 2 CO2 + 12 H+ + 12 e− Протоннообменная мембрана 3 O2 + 12 H+ + 12 e− → 6 H2O 60
ТЭ на основе ортофосфорной кислоты 2 H2 → 4 H+ + 4 e− Раствор фосфорной кислоты O2 + 4 H+ + 4 e− → 2 H2O 200
ТЭ на основе расплавленного карбоната 2 H2 + 2 CO32− → 2 H2O + 2 CO2 + 4 e− Расплавленный карбонат O2 + 2 CO2 + 4 e− → 2 CO32− 650
Твердотельный оксидный ТЭ 2 H2 + 2 O2− → 2 H2O + 4 e− Смесь оксидов O2 + 4 e− → 2 O2− 1000

Воздушно-алюминиевый электрохимический генератор

Воздушно-алюминиевый электрохимический генератор использует для производства электроэнергии окисление алюминия кислородом воздуха. Токогенерирующую реакцию в нем можно представить в виде

4 Al + 3 O 2 + 6 H 2 O ⟶ 4 Al ( OH ) 3 , {\displaystyle {\ce {4 Al + 3 O_2 + 6 H_2O -> 4 Al(OH)_3,}}}E = 2 , 71 V , {\displaystyle \quad E=2,71~{\text{V}},}

а реакцию коррозии — как

2 Al + 6 H 2 O ⟶ 2 Al ( OH ) 3 + 3 H 2 ⋅ {\displaystyle {\ce {2 Al + 6 H_2O -> 2 Al(OH)_3 + 3 H_2.}}}

Серьёзными преимуществами воздушно-алюминиевого электрохимического генератора являются: высокий (до 50 %) коэффициент полезного действия, отсутствие вредных выбросов, простота обслуживания.

Преимущества и недостатки

Преимущества водородных топливных элементов

Водородные топливные элементы обладают рядом ценных качеств, среди которых:

Высокий КПД

Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.
  • У топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).
  • Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. В обычных генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые, в свою очередь, вращают электрический генератор. Результативный максимум КПД составляет 53 %, чаще же он находится на уровне порядка 35-38 %. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80 %.
  • КПД почти не зависит от коэффициента загрузки.

Экологичность

Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.

За: В воздух выделяется лишь водяной пар, который не наносит вреда окружающей среде.

Против: водород просачиваясь как из баллона так и топливного элемента, будучи легче воздуха, поднимается в верхнии слои атмосферы, образуя вместе с гелием своеобразную «корону земли» и безвозвратно покидает атмосферу Земли в течение нескольких лет, что при массовом применении технологий на водороде способно привести к глобальной потере воды, если водород будет производиться её электролизом.

Компактные размеры

Топливные элементы легче и имеют меньшие размеры, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей. Средняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, продлить время действия приборов и оборудования.

Проблемы топливных элементов

Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры. Возникает проблема «курицы и яйца» — зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта?

Большинство элементов при работе выделяют то или иное количество тепла. Это требует создания сложных технических устройств для утилизации тепла (паровые турбины и пр.), а также организации потоков топлива и окислителя, систем управления отбираемой мощностью, долговечности мембран, отравления катализаторов некоторыми побочными продуктами окисления топлива и других задач. Но при этом же высокая температура процесса позволяет производить тепловую энергию, что существенно увеличивает КПД энергетической установки.

Проблема отравления катализатора и долговечности мембраны решается созданием элемента с механизмами самовосстановления — регенерация ферментов-катализаторов.

Топливные элементы, в силу низкой скорости химических реакций, обладают значительной инертностью и для работы в условиях пиковых или импульсных нагрузок требуют определённого запаса мощности или применения других технических решений (суперконденсаторы, аккумуляторные батареи).

Также существует проблема получения и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

Из простых химических элементов водород и углерод являются крайностями. У водорода самая большая удельная теплота сгорания, но очень низкая плотность и высокая химическая активность. У углерода самая высокая удельная теплота сгорания среди твёрдых элементов, достаточно высокая плотность, но низкая химическая активность из-за энергии активации. Золотая середина — углевод (сахар) или его производные (этанол) или углеводороды (жидкие и твёрдые). Выделяемый углекислый газ должен участвовать в общем цикле дыхания планеты, не превышая предельно допустимых концентраций.

Существует множество способов производства водорода, но в настоящее время около 50% водорода, производимого во всём мире, получают из природного газа. Все остальные способы пока очень дорогостоящие. Очевидно, что при неизменном балансе первичных энергоносителей, с ростом потребностей в водороде как в массовом топливе и развитию устойчивости потребителей к загрязнениям, рост производства будет расти именно за счёт этой доли, а с наработкой инфраструктуры, позволяющей иметь его в доступности, более дорогие (но более удобные в некоторых ситуациях) способы будут отмирать. Прочие способы, в которые водород вовлечён в качестве вторичного энергоносителя, неизбежно нивелируют его роль от топлива до своего рода химического аккумулятора. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт из-за этого неизбежно. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается (см. Ветроэнергетика, Производство водорода). Например, средняя цена электроэнергии в США выросла в 2007 г. до $0,09 за кВт·ч, тогда как себестоимость электроэнергии, произведённой из ветра, составляет $0,04—$0,07 (см. Ветроэнергетика или AWEA). В Японии киловатт-час электроэнергии стоит около $0,2, что сопоставимо со стоимостью электроэнергии, произведённой фотоэлектрическими элементами. Учитывая территориальную удалённость некоторых перспективных областей (например, транспортировать полученную фотоэлектрическими станциями электроэнергию из Африки напрямую, по проводам, явно бесперспективно, несмотря на её огромный энергетический потенциал в этом плане), даже работа водорода как «химического аккумулятора» может быть вполне рентабельной. По данным на 2010 г. стоимость энергии водородного топливного элемента должна подешеветь в восемь раз, чтобы стать конкурентноспособной с энергией, производимой тепловыми и атомными электростанциями.

К сожалению, в водороде, произведённом из природного газа, будет присутствовать СО и сероводород, отравляющие катализатор. Поэтому для уменьшения отравления катализатора необходимо повысить температуру топливного элемента. Уже при температуре 160 °C в топливе может присутствовать 1% СО.

К недостаткам топливных элементов с платиновыми катализаторами можно отнести высокую стоимость платины, сложности с очисткой водорода от вышеупомянутых примесей, и как следствие, дороговизну газа, ограниченный ресурс элемента вследствие отравления катализатора примесями. Кроме того, платина для катализатора — невозобновляемый ресурс. Считается, что её запасов хватит на 15—20 лет производства элементов.

В качестве альтернативы платиновым катализаторам исследуется возможность применения ферментов. Ферменты являются возобновляемым материалом, они дёшевы, не отравляются основными примесями в дешёвом топливе. Обладают специфическими преимуществами. Нечувствительность ферментов к СО и сероводороду сделала возможным получение водорода из биологических источников, например, при конверсии органических отходов.

История

Первые открытия

Принцип действия топливных элементов был открыт в 1839 г. английским ученым У. Гроувом, который обнаружил, что процесс электролиза обратим, то есть водород и кислород можно объединить в молекулы воды без горения, но с выделением тепла и электричества. Свой прибор, где удалось провести эту реакцию, ученый назвал «газовой батареей», и это был первый топливный элемент. Однако в последующие 100 лет эта идея не нашла практического применения.

В 1937 г. профессор Ф.Бэкон начал работы над своим топливным элементом. К концу 1950-х он разработал батарею из 40 топливных элементов, имеющую мощность 5 кВт. Такую батарею можно было применить для обеспечения энергией сварочного аппарата или грузоподъемника. Батарея работала при высоких температурах порядка 200°С и более и давлениях 20-40 бар. Кроме того, она была весьма массивна.

История исследований в СССР и России

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011 года.

В СССР первые публикации о топливных элементах появились в 1941 году.

Первые исследования начались в 60-х годах. РКК «Энергия» (с 1966 года) разрабатывала PAFC элементы для советской лунной программы. С 1987 года по 2005 «Энергия» произвела около 100 топливных элементов, которые наработали суммарно около 80000 часов.

Во время работ над программой «Буран», исследовались щелочные AFC элементы. На «Буране» были установлены 10 кВт топливные элементы.

В 70-80 годы «Квант» совместно с рижским автобусным заводом «РАФ» разрабатывали щелочные элементы для автобусов. Прототип автобуса на топливных элементах был изготовлен в 1982 году.

В 1989 году «Институт высокотемпературной электрохимии» (Екатеринбург) произвёл первую SOFC установку мощностью 1 кВт.

В 1999 году АвтоВАЗ начал работы с топливными элементами. К 2003 году на базе автомобиля ВАЗ-2131 было создано несколько опытных экземпляров. В моторном отсеке автомобиля располагались батареи топливных элементов, а баки со сжатым водородом в багажном отделении, то есть была применена классическая схема расположения силового агрегата и топливных баков-баллонов. Разработками водородного автомобиля руководил кандидат технических наук Мирзоев Г. К.

10 ноября 2003 года было подписано Генеральное соглашение о сотрудничестве между Российской академией наук и компанией «Норильский никель» в области водородной энергетики и топливных элементов. Это привело к учреждению 4 мая 2005 года Национальной инновационной компании «Новые энергетические проекты» (НИК НЭП), которая в 2006 году произвела резервную энергетическую установку на основе ТЭ с твёрдым полимерным электролитом мощностью 1 кВт. По сообщению Информационного агентства «МФД-ИнфоЦентр», ГМК «Норильский никель» ликвидирует компанию «Новые энергетические проекты» в рамках объявленного в начале 2009 года решения избавляться от непрофильных и убыточных активов.

В 2008 году была основана компания «ИнЭнерджи», которая занимается научно-исследовательскими и опытно-конструкторскими работами в области электрохимических технологий и систем электропитания. По результатам проведенных исследований, при кооперации с ведущими институтами РАН (ИПХФ, ИФТТ и ИХТТ), был реализован ряд пилотных проектов, показавших высокую эффективность. Для компании «МТС» была создана и введена в эксплуатацию модульная система резервного питания на базе водородно-воздушных топливных элементов, состоящая из ТЭ, системы управления, накопителя электроэнергии и преобразователя. Мощность системы до 10кВт.

Водородно-воздушные энергетические системы обладают рядом неоспоримых преимуществ, среди которых широкий температурный диапазон эксплуатации внешней среды (-40..+60С), высокий КПД (до 60%), отсутствие шума и вибраций, быстрый старт, компактность и экологичность (вода, как результат “выхлопа”).

Совокупная стоимость владения водородно-воздушных систем значительно ниже обычных электрохимических батарей. Кроме того, они обладают высочайшей отказоустойчивостью за счет отсутствия движущихся частей механизмов, не нуждаются в техническом обслуживании, а срок их эксплуатации достигает 15 лет, превосходя классические электрохимические батареи вплоть до пяти раз.

Над созданием образцов электростанций на топливных элементах работают Газпром и федеральные ядерные центры РФ. Твердооксидные топливные элементы, разработка которых сейчас активно ведётся, появятся, видимо, после 2016-го года.

Применение топливных элементов

См. также: Водородная энергетика

Топливные элементы первоначально применялись только в космической отрасли, однако в настоящее время сфера их применения непрерывно расширяется. Их применяют в стационарных электростанциях, в качестве автономных источников тепло- и электроснабжения зданий, в двигателях транспортных средств, в качестве источников питания ноутбуков и мобильных телефонов. Часть этих устройств пока не покинула стен лабораторий, другие уже коммерчески доступны и давно применяются.

Примеры применения топливных элементов

Область применения Мощность Примеры использования
Стационарные установки 5—250 кВт и выше Автономные источники тепло- и электроснабжения жилых, общественных и промышленных зданий, источники бесперебойного питания, резервные и аварийные источники электроснабжения
Портативные установки 1—50 кВт Дорожные указатели, грузовые и железнодорожные рефрижераторы, инвалидные коляски, тележки для гольфа, космические корабли и спутники
Транспорт 25—150 кВт Автомобили и другие транспортные средства, военные корабли и подводные лодки
Портативные устройства 1—500 Вт Мобильные телефоны, ноутбуки, карманные компьютеры, различные бытовые электронные устройства, современные военные приборы

Широко используются высокомощные энергетические установки на базе топливных элементов. В основном такие установки работают на основе элементов на базе расплавленных карбонатов, фосфорной кислоты и твёрдых оксидов. Как правило, такие установки используют не только для выработки электроэнергии, но и для получения тепла.

Большие усилия прилагаются для разработки гибридных установок, в которых высокотемпературные топливные элементы комбинируются с газовыми турбинами. КПД таких установок может достигать 74,6 % при усовершенствовании газовых турбин.

Активно выпускаются и маломощные установки на базе топливных элементов.

Техническое регулирование в области производства и использования топливных элементов

В 19 августа 2004 г. Международной электротехнической комиссией (International Electrotechnical Commission, IEC) был выпущен первый международный стандарт IEC 62282–2 «Технологии топливных элементов. Часть 2, Модули топливных элементов». Это был первый стандарт серии IEC 62282, разработка которой осуществляется Техническим комитетом «Технологии топливных элементов» (TC/IEC 105). В состав Технического комитета ТС/IEC 105 входят постоянные представители из 17 стран и наблюдатели из 15 стран мира.

TC/IEC 105 разработал и издал 14 международных стандартов серии IEC 62282, охватывающих широкий спектр тематики, связанной со стандартизацией энергоустановок на основе топливных элементов. Федеральное агентство по техническому регулированию и метрологии Российской Федерации (РОССТАНДАРТ) является коллективным членом Технического комитета ТС/IEC 105 на правах наблюдателя. Координационную деятельность с МЭК со стороны Российской Федерации осуществляет секретариат РосМЭК (Росстандарт), а работы по имплементации стандартов МЭК производятся национальным Техническим комитетом по стандартизации ТК 029 «Водородные технологии», Национальной ассоциацией водородной энергетики (НАВЭ) и ООО «КВТ». В настоящее время РОССТАНДАРТ принял следующие национальные и межгосударственные стандарты, идентичные международным стандартам IEC:

ГОСТ Р 56188.1-2014/IEC/TS 62282-1:2010 «Технологии топливных элементов. Часть 1. Терминология»;

ГОСТ Р МЭК 62282-2-2014 «Технологии топливных элементов. Часть 2. Модули топливных элементов»;

ГОСТ Р МЭК 62282-3-100-2014 «Технологии топливных элементов. Часть 3-100. Стационарные энергоустановки на топливных элементах. Безопасность»;

ГОСТ Р МЭК 62282-3-200-2014 «Технологии топливных элементов. Часть 3-200. Стационарные энергоустановки на топливных элементах. Методы испытаний для определения рабочих характеристик»;

ГОСТ IEC 62282–3–201–2016 «Технологии топливных элементов. Часть 3–201. Стационарные энергоустановки на топливных элементах. Методы испытаний для определения рабочих характеристик систем малой мощности»;

ГОСТ IEC 62282–3–300–2016 «Технологии топливных элементов. Часть 3–300. Стационарные энергоустановки на топливных элементах. Монтаж»;

ГОСТ IEC 62282–5–1–2016 «Технологии топливных элементов. Часть 5–1 Портативные энергоустановки на топливных элементах. Безопасность»

ГОСТ IEC 62282-7-1–2016 «Технологии топливных элементов – Часть 7-1: Методы испытаний единичных элементов для топливных элементов с полимерным электролитом».

Использование топливных элементов в космических аппаратах

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 июня 2018 года.

> См. также

  • Производство водорода
  • Водородный транспорт

Топливные Ячейки На Природном Газе

топливные ячейки на природном газе

Высокотемпературные топливные ячейки – когенерационные источники энергии будущего

И.В. Маслов – представительство компании MTU, Москва

Высокотемпературные модульные топливные ячейки являются бесперебойными источниками генерации идеального по параметрам электрического тока. Они востребованы даже телекоммуникационными компаниями и компьютерными центрами, обычно очень чувствительными к качеству потребляемой электроэнергии.

Наряду с такими нетрадиционными источниками энергии, как солнечные батареи, ветроэлектрические станции и т. д. все более значительное место занимают так называемые топливные ячейки.

Немецкая компания MTU CFC Solutions разрабатывает и производит стационарные высокотемпературные модульные топливные ячейки (high temperature fuel cell, HTFC) в расплавах карбоната для экологически безопасной выработки электроэнергии, тепла и пара. Совместно с американской фирмой Fuel Cell Energy (FCE), производителем топливных элементов, MTU CFC Solutions запустила в эксплуатацию более 35 энергоустановок.

Высокотемпературные топливные ячейки, работающие на природном газе, могут генерировать 245 кВт электрической и 180 кВт тепловой мощности. Электрический КПД установки составляет при этом около 47%. Сравнение подтверждает: КПД жидкокарбонатной топливной ячейки выше, чем у других энергетических установок. Работает она практически бесшумно и без вибрации, что делает установку потенциально привлекательной для работы в городских условиях. На базе HTFC MTU возможна как утилизация тепла, так и генерация холода. Кроме природного газа, установки могут использовать в качестве топлива биогаз, угольный и рудничный газы, синтетические газы с высокой теплотой сгорания.

Топливные ячейки HTFC MTU наработали суммарно около 180000 часов и были рекомендованы к серийному производству. Они имеют низкий уровень эмиссии и требуют значительно меньше воздуха для процесса горения, чем традиционные двигатели внутреннего сгорания.

Топливные ячейки работают при температуре 650 °С, при этом возможна генерация пара температурой около 400 °С. Пар может использоваться для различных технологических нужд: например, для стерилизации медицинских инструментов в госпиталях, для вулканизации шин и т. д. Генерируемое тепло может также использоваться для генерации холода с помощью абсорбционных машин.

Благодаря высокому КПД уровень эмиссии углекислого газа несопоставимо ниже, чем у двигателей внутреннего сгорания. Принципиальным является и тот факт, что в составе HTFC не используется каких-либо редких материалов.

Принцип действия высокотемпературного модуля топливных ячеек

Анод и катод внутри модуля разделяются мембраной. При поступлении водорода на анод и кислорода на катод начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода. Данный процесс является обратным электролизу.

Мембрана между анодом и катодом состоит из электролита карбоната. Поэтому такое оборудование и относится к типу топливных ячеек в расплавах карбоната.

Ионы карбоната (СО3-2 ) проходят через мембрану и достигают анода, где свободный атом кислорода соединяется с водородом, превращаясь в воду, стекающую вниз. Параллельно образуются углекислый газ и два свободных электрона. Электроны движутся по проводнику к катоду, генерируя электрический ток.

Таким же образом оставшиеся молекулы СО2 поступают на катод, где абсорбируются свободные электроны и атом кислорода из воздуха. Затем углекислый газ участвует в реакции в качестве ионов карбоната.

Рабочая температура в модуле, составляющая около 650 °С, обеспечивает следующие преимущества:

• возможность производства пара и холода

• достижение наивысшего КПД за счет реформинга газа внутри ячейки

• возможность применения традиционных металлов (с их обычной обработкой) как для ячеек, так и для модуля.

Устройство высокотемпературного модуля ВМ (MTU)

Высокотемпературный модуль отличает компактное расположение всех горячих компонентов в одном цилиндрическом корпусе. Его ключевым элементом является модуль топливных ячеек, расположенный горизонтально, – это позволяет подавать топливный газ снизу. В то же время под собственным весом модуля происходит герметизация всех стыков по газовому тракту, что повышает безопасность работы установки.

После сборки модуля, состоящего из индивидуальных топливных ячеек, его размещают внутри ВМ и монтируют вместе с топливной системой газоподачи. Высокотемпературные модули имеют ограниченные габаритные размеры, и их можно устанавливать в существующих помещениях. Кроме того, их легко транспортировать и осуществлять техобслуживание.

Интегрированная в ВМ система подачи газа позволяет обойтись без дорогостоящего монтажа труб для подвода газа, воздуха, отвода выхлопных газов, подачи воды.

Основными особенностями ВМ являются компактность и эффективность. Все горячие части объединены в одном контейнере, поэтому нет необходимости в периферийном размещении компонентов, что влияет на повышение уровня КПД.

Поступающий топливный газ подается на вертикально расположенные каналы анодов через газораспределительное устройство. При температуре 650 °С при взаимодействии природного газа и пара на анодах выделяется водород.

Газ, локально генерируемый с верхней части анодов, перемешивается с дополнительно подаваемым воздухом, после чего каталитически оксидируется.

Газовая смесь содержит углекислый газ и кислород, необходимые для выделения на катодах. Вентилятор обеспечивает циркуляцию газовой смеси по горизонтально расположенным каналам катодов. Образующийся на катодах газ имеет достаточно высокую температуру и может использоваться для когенерации тепла.

Компоненты мини-ТЭЦ на базе HTFC

Теплоэлектростанция состоит из трех блоков:

• высокотемпературного модуля, который является основной частью мини-ТЭЦ. Он включает в себя горизонтально расположенный модуль топливных ячеек камеру смешения наружного воздуха и газов, образующихся на анодах и катодах сборник катодного газа два циркуляционных вентилятора и подогреватель для запуска

• блока подготовки газа для топливных ячеек, где газ очищается от серы, подогревается и увлажняется

• инвертора и модуля управления.

Постоянный ток от топливных ячеек преобразуется в переменный и поступает в общую сеть. С помощью системы управления может осуществляться дистанционное управление HTFC (обычно мини-ТЭЦ на базе топливных ячеек функционируют автономно).

Преимущества HTFC MTU

Многие преимущества мини-ТЭЦ на базе HTFC MTU свойственны всем высокотемпературным топливным ячейкам, но существуют такие, которые отмечаются только у этого типа электростанций.

• низкая эмиссия выхлопных газов

• бесшумная работа

• экономия природных ресурсов, так как HTFC функционируют на возобновляемых источниках.

Высокая эффективность

• электрический КПД в составе станции составляет 47%. При дооснащении мини-ТЭЦ паровыми турбинами возможно достижение суммарного электрического КПД до 65%

• утилизация тепла при больших температурах

• отсутствие необходимости в техобслуживании.

• использование различных газов в качестве топлива с сохранением высокого уровня КПД (природный и угольный газ, биогаз, синтетические газы, в том числе метанол, а также другие газообразные или жидкие газокарбонаты)

• идеальная установка для выработки электроэнергии и утилизации тепла или генерации холода.

• коэффициент готовности – 98% (благодаря небольшому количеству сменных узлов)

• высокое качество генерируемой энергии

• конструктивно несложная структура системы.

HTFC MTU вырабатывают электрический ток постоянного или переменного напряжения без отклонения выходного напряжения и частоты от постоянного значения. В связи с этим они востребованы даже телекоммуникационными компаниями и компьютерными центрами, которые обычно очень чувствительны к качеству потребляемой электроэнергии.

Дополнительным преимуществом HTFC MTU является территориальная близость к потребителю, что делает их идеальными для использования в качестве независимого источника электроэнергии.

«Марсианская технология» Bloom Energy

Топливные элементы — это устройства, которые превращают энергию химической реакции в электричество. Они работают на водороде, природном газе или биогазе. Согласно отчету министерства энергетики США, на 2016 год общая мощность всех изготовленных в мире топливных элементов составляла 500 мегаватт, и темпы производства продолжают расти.
Такие устройства выпускает несколько компаний, одна из них — Bloom Energy.
Топливную ячейку Bloom Energy разработал К. Р. Шридхар (K. R. Sridhar) в 1990-х. Тогда он работал в научной лаборатории, создававшей устройства для НАСА. И космическое агентство заказало прибор, который можно было бы использовать для поддержания жизни в колонии на Марсе.
Шридхар создал устройство, которое расщепляло воду на кислород для дыхания и водород для транспортного топлива. Питалось оно от солнечных батарей. Девайс должны были отправить на Марс в 2001 году, но миссию отменили из-за технических проблем с летательным аппаратом.
Шридхар подумал, что если «перевернуть» процессы, протекающие в устройстве, то получится установка, которая генерирует электричество из водорода и кислорода. Для производства таких устройств (топливных ячеек) он основал Bloom Energy.
Ячейки компании работают на природном газе (но могут использовать и чистый водород). При попадании в топливный элемент метан в составе природного газа превращается в водород за счет взаимодействия с водяным паром, который также подают в устройство. Затем водород окисляется на аноде, что генерирует ток.
Самая привлекательная черта в топливных элементах — экологичность. При работе ячейки на метане парниковые газы выделяются, но в гораздо меньшем объеме, чем на тепловых электростанциях. По данным Bloom Energy, их технология вырабатывает на 60% меньше углекислого газа, чем ТЭС с такой же мощностью. Если же элемент работает на водороде, он выделяет только воду и не вредит окружающей среде.
«Одним из главных достоинств топливных ячеек можно назвать их бесшумность. В них нет насосов, вентиляторов и каких-либо движущихся компонентов. — комментирует Сергей Белкин, начальник отдела развития 1cloud.ru. — Это особенно важно для дата-центров, где уровень шума колеблется от 70 до 80 дБ. Внедрение таких бесшумных источников питания помогает ЦОД предоставить сотрудникам более комфортные условия для работы».Устройства Bloom Energy используют в ЦОД крупные компании. Они напоминают мини-холодильник, который ставят над серверными стойками. Сами топливные ячейки (находящиеся внутри) компактны и занимают мало места. Длина и ширина одной ячейки Bloom Energy — 10 см, а толщина — меньше сантиметра. Мощность такого устройства — 25 Ватт.
В 2017 году сделку с организацией заключил Equinix, провайдер услуг дата-центров. Bloom Energy обеспечит своими топливными элементами дюжину ЦОД Equinix. С Bloom Energy работают также Adobe, Walmart, Yahoo, Google, AT&T и другие компании.

Кто ещё использует топливные элементы

Перспективы в топливных элементах видят и другие компании. В 2017 году Microsoft начала строить электростанцию на основе этой технологии. Мощность станции составит 10 мегаватт, а на её создание ИТ-гигант потратит 45 миллионов долларов. Топливные элементы позволят Microsoft сократить потери энергии, которые обычно возникают при её передаче до ЦОД.
По словам главы исследовательской программы Microsoft в области энергетики Шона Джеймса (Sean James), компания планирует увеличить мощность станции в будущем почти вдвое и видит в технологии большой потенциал. Также Джеймс сказал, что сначала Microsoft будет использовать в элементах природный газ, но затем перейдет на водородное топливо.
«Электростанции» из топливных элементов создает и Apple. Компания уже построила установку на 10 мегаватт в дата-центре в городе Мейден и станцию на 4 мегаватта в главном офисе в Купертино.

/ Air Force / PD
Некоторые организации разрабатывают собственные топливные элементы, например автомобилестроительная компания Daimler. В планах у руководства создать ЦОД, который будет полностью полагаться на «зеленое» электричество. Большую часть энергии в нем обеспечат ветрогенераторы и солнечные панели. Избыток электричества пойдет на производство и хранение водорода для топливных элементов, а сами ячейки будут использовать как вспомогательный источник питания для дата-центров.
В топливные элементы инвестируют и правительства отдельных стран. В Южной Корее уже работают шесть станций на основе топливных ячеек общей мощностью в 300 мегаватт.
Корея занимает первое место по потреблению электричества в Азии и входит в десятку мировых государств, которые больше других загрязняют атмосферу. Более того, в Корее 70% территории приходится на холмы и горы, поэтому места под ветряные и солнечные генераторы в стране не хватает. Потому к 2022 году правительство планирует расширить суммарную мощность станций на базе ячеек до 800 мегаватт.

Недостатки и перспективы технологии

Главное препятствие для компаний, которые хотят внедрить топливные элементы, — стоимость устройства. Один ватт мощности ячейки Bloom Energy обходится в 7–8 долларов. Для солнечной панели цена ватта составляет всего 3 доллара. Отчасти это связано с высокой стоимостью компонентов топливной ячейки, например, там используют платиновый катализатор.
Другой недостаток характерен только для систем, работающих на водороде. Для хранения топлива необходима технически сложная инфраструктура. Водород находится в ёмкости либо в жидком, либо в сжатом состоянии. В первом случае в хранилище приходится поддерживать температуру ниже -252,8 °C, точки кипения водорода. Во втором — требуется давление в 350–700 бар.
Обе эти проблемы исследователи компаний надеются решить в ближайшем будущем. Они намерены продолжать совершенствовать процессы производства, искать более доступные материалы и сокращать стоимость устройств. Будет развиваться и инфраструктура для топлива. Учёные создают новые химические способы хранения водорода в абсорбированном виде, для которых не потребуется высокое давление или низкая температура.
Из-за высокой стоимости топливных элементов маловероятно, что в ближайшее время они начнут массово использоваться в качестве основного источника электричества. Скорее всего, сначала компании будут создавать на базе ячеек системы резервного питания (как это делают в Daimler). А дальнейшее распространение технологии будет зависеть от того, насколько изготовителям удастся снизить расходы на производство.

Несколько постов из нашего корпоративного блога:

  • Как IaaS помогает франчайзи «1С»: опыт 1cloud
  • Эволюция архитектуры облака 1cloud: сложности модулирования
  • Зачем нужен мониторинг?
  • Чем арендованная инфраструктура лучше обычного «железа»
  • Как обеспечивается безопасность данных в облаке