Умный дом голосовое управление

Содержание

Управление умным домом с компьютера

Алексей Винчен 17.12.2018 нет комментариев 0 Управление умным домом с компьютера 3.3 (66.67%) 3 votes

Жители квартир и домов тратят много времени на регулирование множества процессов в своем жилье: включение и выключение электроприборов и света, видеонаблюдение. Однако не все знают, что эти и другие процессы можно автоматизировать, управляя соответствующей техникой с обыкновенного настольного компьютера, который есть у каждого.

Управление домом с компьютера — идея логичная. А появилась она даже до начала массовых продаж в магазинах комплексов автоматизации. Таким образом, сконструировать «умный дом» своими руками теперь может каждый владелец жилья – компьютер в этой системе выступает ключевым узлом. Установить его можно непосредственно в комнате или в отдельном шкафу.

Пользовательский компьютер выполнит все «умные» функции, а сигнал с внешних датчиков проходит по стандартным каналам TCP/IP или USB. Удобство создания такого узла объясняется еще и тем, что больше половины производителей выпускают технику на основе проводного подключения, которая снабжена адаптерами (чтобы подключить ее к компьютеру или ноутбуку). Возможный вариант работы с аналоговыми или же цифровыми сигналами — модуль для вывода и ввода, подключающийся посредством USB. Возможности такого устройства недостаточны, а сама автоматика подойдет для сигналов, имеющих уровень 0—5 вольт. Чтобы преобразовать полученный сигнал, в таком комплексе используются формирователи и преобразователи.

Управление домом с компьютера

Преимущества и недостатки

Пользователям компьютеров умный дом на базе ПК кажется перспективной идеей по следующим причинам:

  • доступность узла для интеллектуального управления. У владельцев домов дома присутствует хотя бы один компьютер, а при необходимости под эти цели покупается даже бюджетный нетбук;
  • доступная стоимость модулей для ввода и вывода (сравнительно с устройствами, которые используются с промышленными контроллерами);
  • у него нет ограничений по количеству подключенных приборов (в готовых комплектах обычно присутствует малое количество техники для контроля над светом и безопасностью, а контроллер не рассчитан на множество приборов). Собрав умный дом собственноручно, вы сможете настроить его на выполнение нужных для вас опций, а также удобный способ управления, будь то голосовые команды или смартфон;
  • возможность составить сложный комплекс с широким набором функций.

В каких случаях вы чаще всего покупаете новый телефон? Сразу, как только выходит новая модель 28 ( 1.67 % ) Когда текущиая модель совсем устареет морально и физически 447 ( 26.72 % ) Только когда старый сломается/потеряется 917 ( 54.81 % ) Когда выходит модель, которая уже значительно отличается от моей по функциям 233 ( 13.93 % ) Другое 48 ( 2.87 % )

Не стоит забывать о возможных недостатках системы, среди которых выделяют следующие:

  • необходимость подбора надежного узла (непосредственно компьютера) с достаточно надежной операционной системой и широким функционалом;
  • зависимость составляющих комплекса от ноутбука, который по ходу использования ломается по причине механической поломки, износа или отключения света;
  • необходимость собственноручного планирования схем и воплощение их в жизнь.

Технологии управления

Управление домом с компьютера сложно представить без контроля над электропитанием. Для воплощения этой технологии специалисты рекомендуют использовать 1-wire фирмы Maxim/Dallas. Такая технология используется в промышленных и бытовых системах и хорошо там себя зарекомендовала.

Кроме того, с компьютера удобно управлять и контролировать охранный комплекс — в удаленном режиме можно просматривать данные с видеокамер и информацию с датчиков, чтобы узнать, как ведут себя дети или животные, а также увидеть, не было ли несанкционированного проникновения в квартиру. Помимо компьютера, для реализации этой идеи понадобятся видеокамеры с датчиками движения или открытия дверей, которые можно подключить к технике через USB-разъем. Если вас беспокоит стандартное ограничение длины провода в 5 м, купите активный длинный кабель или свяжите провода через специальные хабы, имеющие внешнее питание (возможны другие варианты).

Чтобы научить систему «умного дома» понимать владельца и даже разговаривать с ним, можно воспользоваться самым доступным методом и приспособить под потребности функционал распознавания речи от компании Google. Миллионы людей по всему миру уже оценили его достойный уровень голосового перевода и поиска.

Технологии управления умным домом с компьютера

Для координации и управления системой при помощи компьютера лучше всего написать отдельную программу для всех ее компонентов или воспользоваться готовыми решениями (Ardublock). Эта программная среда для автоматизации техники идет в комплекте с некоторыми наборами электроники. Помимо управления сигнализацией и электричеством, такая программа сможет:

  • управлять состоянием электроприборов (подключать и отключать технику через «умную» розетку, программировать время включения и режим работы);
  • замерять и контролировать постоянную температуру в доме.

Автор, специалист в сфере IT и новых технологий.

Получил высшее образование по специальности Фундаментальная информатика и информационные технологии в Московском государственном университете имени М.В. Ломоносова. После этого стал экспертом в известном интернет-издании. Спустя время, решил попробовать писать статьи самостоятельно. Ведет популярный блог на Ютубе и делится интересной информацией из мира технологий.

Интерфейс 1-Wire разработан фирмой Dallas Semiconductor, все права на этот интерфейс принадлежат исключительно этой фирме (Которая, впрочем, уже давно прекратила свое самостоятельное сущестование и перешла под крыло корпорации MAXIM Inc.).
Чем привлекателен этот интерфейс? Разумеется, малым количеством выводов МК, требующихся для подключения практически неограниченного количества микросхем. В самом деле, двусторонний обмен требует всего 1 линию! Кроме того, ассортимент устройств с этим интерфейсом весьма широк. Наконец, протокол обмена по этому интерфейсу очень прост и легко реализуется программно практически на любых МК хотя есть и специальные микросхемы-адаптеры).

Фирменная документация по указанному интерфейсу и устройствах, его поддерживающих, находится по адресу http://www.maxim-ic.com/1-Wire.cfm.

Аппаратная реализация интерфейса 1-Wire

На рисунке показана упрощенная схема аппаратной реализации интерфейса 1-Wire. Вывод DQ устройства представляет собой вход КМОП-логического элемента, который может быть зашунтирован (замкнут на общий провод) полевым транзистором. Сопротивление канала этого транзистора в открытом состоянии — около 100 Ом. Когда транзистор заперт — имеется небольшой ток утечки (примерно 5 мкА) на общий провод.
Шина 1-Wire должна быть подтянута отдельным резистором к напряжению питания устройств (которое, кстати, может быть от 3 до 5В — уточняется по характеристикам конкретного устройства). Сопротивление этого резистора 4.7 К, однако, это значение рекомендовано только для достаточно коротких линий. Если шина 1-Wire используется для подключения удаленных на большое расстояние устройств, то сопротивление этого резистора следует уменьшить. Чуть позже я коснусь этой проблемы и поясню причины необходимости такого уменьшения сопротивления, а пока скажу, что минимально допустимое его сопротивление — около 300 Ом, а максимальное — около пары-тройки десятков килоом. Данные величины — ориентировочные, вы всегда должны уточнить по характеристикам конкретного устройства 1-Wire его максимальный втекающий ток линии DQ, который, собственно, и определяет минимум внешнего сопротивления.
Подключение шины 1-Wire к МК показано условно в двух вариантах: с использованием 2 отдельных выводов МК (один в качестве выхода, а другой в качестве входа), так и одного, работающего и на ввод и на вывод. Разделение этих способов показано пунктирной линией, условно обозначающей границу корпуса МК. С некоторой натяжкой можно представить себе логическое строение шины 1-Wire как всем известное соединение выводов микросхем с открытым коллектором по схеме «монтажное ИЛИ». Очевидно, что передача какой-либо информации при этом возможна только выдачей низкого уровня в линию, т.е. замыканием ее на общий провод, а в высокий логический уровень линия вернется сама, благодаря наличию внешнего подтягивающего резистора. Так же очевидно, что одновременная передача нескольких устройств обречена на неудачу из-за полного искажения информации (все передаваемые единицы одного устройства будут подавлены передаваемыми нулями от другого устройства).

Программная реализация интерфейса 1-Wire

А теперь о том, как происходит обмен информацией по шине 1-Wire. Основные постулаты.
1. Обмен всегда ведется по инициативе одного ведущего устройства, которое в большинстве случаев является микроконтроллером (МК).
2. Любой обмен информацией начинается с подачи импульса сброса («Reset Pulse» или просто RESET) в линию 1-Wire ведущим устройством.
3. Для интерфейса 1-Wire в общем случае предусматривается «горячее» подключение и отключение устройств.
4. Любое устройство, подключенное к 1-Wire после получения питания выдает в линию DQ импульс присутствия, называемый «Presence pulse» (далее я буду использовать термин PRESENCE). Этот же импульс устройство всегда выдает в линию, если обнаружит сигнал RESET.
5. Появление в шине 1-Wire импульса PRESENCE после выдачи RESET однозначно свидетельствует о наличии хотя бы одного подключенного устройства.
6. Обмен информации ведется так называемыми тайм-слотами: один тайм-слот служит для обмена одним битом информации.
7. Данные передаются побайтно, бит за битом, начиная с младшего бита. Достоверность переданных/принятых данных (проверка отсутствия искажений) гарантируется путем подсчета циклической контрольной суммы.
Основные постулаты определяют логический низкоуровневый протокол обмена данными.
На следующем рисунке показана диаграмма сигналов RESET и PRESENCE, с которых всегда начинается любой обмен данными. Кстати, выдача импульса RESET в процессе обмена служит для досрочного завершения процедуры обмена информацией.

Диаграмма сигналов инициализации обмена

Как видим, длительность большинства временных интервалов очень приблизительная и имеет только ограничение только по минимуму (не меньше указанного). Условные обозначения линий, показанные на Рис. 2, будут использоваться и далее.
Импульс RESET формирует ведущий МК, переводя в низкий логический уровень шину 1-Wire и удерживая ее в этом состоянии минимум 480 микросекунд. Затем МК должен «отпустить» шину. Через некоторое время, зависящее от емкости линии и сопротивления подтягивающего резистора, в линии установится высокий логический уровень. Протокол 1-Wire ограничивает это время «релаксации» диапазоном от 15 до 60 микросекунд, что и является определяющим для выбора подтягивающего резистора (как правило, емкость линии мы менять существенно не можем, а именно она оказывает существенное влияние на время возврата линии к высокому уровню).
Обнаружив импульс RESET, ведомое устройство приводит свои внутренние узлы в исходное состояние и формирует ответный импульс PRESENCE, как следует из рисунка — не позже 60 микросекунд после завершения импульса RESET. Для этого устройство переводит в низкий уровень линию DQ и удерживает ее в этом состоянии от 60 до 240 микросекунд. Конкретное время удержания зависит от многих параметров, но всегда находится в указанном диапазоне. После этого устройство так же «отпускает» шину.
Но после завершения импульса PRESENCE устройству дается еще некоторое время для завершения внутренних процедур инициализации, таким образом, МК должен приступить к любому обмену с устройством не ранее, чем через 480 микросекунд после завершения импульса RESET.
Итак, процедура инициализации интерфейса, с которой начинается любой обмен данными между устройствами, длится минимум 960 микросекунд, состоит из передачи от МК сигнала RESET и приему от устройства сигнала PRESENCE. Если сигнал PRESENCE не обнаружен — значит на шине 1-Wire нет готовых к обмену устройств.

Теперь рассмотрим процедуры обмена битами информации, которые, как вы помните, осуществляются определенными тайм-слотами. Тайм-слот — это по существу определенная, довольно жестко лимитированная по времени последовательность смены уровней сигнала в линии 1-Wire. Различают 4 типа тайм-слотов (я буду использовать термин МК, как синоним «ведущего устройства» и просто «устройство», как синоним «ведомого»): передача «1» от МК, передача «0» от МК, прием «1» от устройства и прием «0» от устройства.
Любой тайм-слот всегда начинает МК путем перевода шины 1-Wire в низкий логический уровень. Длительность любого тайм-слота должна находиться в пределах от 60 до 120 микросекунд. Между отдельными тайм-слотами всегда должен предусматриваться интервал не менее 1 микросекунды (конкретное значение определяется параметрами ведомого устройства).
Тайм-слоты передачи отличаются от тайм-слотов приема поведением МК: при передаче он только формирует сигналы, при приеме, кроме того, еще и опрашивает (т.е. принимает) уровень сигнала в линии 1-Wire. Следующй рисунок демонстрирует временные диаграммы тайм-слотов всех 4-х типов: вверху показаны тайм-слоты передачи от МК, внизу — приема от устройства.

Тайм-слот передачи «0» заключается просто в удержании шины 1-Wire в низком уровне в течение всей длительности тайм-слота. Передача «1» осуществляется путем «отпускания» шины 1-Wire со стороны МК не ранее чем через 1 микросекунду после начала тайм-слота, но не позже чем через 15 микросекунд. Ведомое устройство опрашивает уровень в шине 1-Wire в течение временного интервала, условно показанного в виде серого прямоугольника, т.е. начиная с 15-й микросекунды от начала тайм-слота и заканчивая 60-й микросекундой от начала. Типичный момент ввода уровня в устройство (т.е. характерный для большинства устройств) — около 30-й микросекунды от начала тайм-слота.
Заштрихованная область — это область «нарастания» уровня в шине 1-Wire, которая зависит от емкости линии и сопротивления подтягивающего резистора, она приведена для справки.
Тайм-слоты приема информации отличаются тем, что МК формирует только начало тайм-слота (абсолютно так же, как при передаче «1»), а затем управление уровнем шины 1-Wire берет на себя устройство, а МК осуществляет ввод этого уровня так же в определенной зоне временных интервалов. Зона эта, как видно из рисунка, довольно мала. Как и раньше, заштрихованная область — область неопределенности, поэтому для ввода, собственно говоря, контроллеру остается даже не промежуток, а скорее конкретный момент, когда он должен ввести уровень сигнала из линии. Этот момент времени — 14-я или 15-я микросекунда от начала тайм-слота. Разумеется, если линия имеет малую емкость, а подтягивающий резистор мал, зона опроса несколько расширяется, однако рекомендую ориентироваться на худший вариант (как, кстати, рекомендует и фирма-производитель), что-бы всегда обеспечить надежный обмен данными.

Итак, подведем итоги. МК начинает тайм слот с выдачи в шину 1-Wire «0» в течение 1 микросекунды. Последующий уровень зависит от типа тайм слота: для приема и передачи «1» уровень должен стать высоким, а для передачи «0» — оставаться низким вплоть до конца тайм-слота, т.е. не менее 60 и не более 120 микросекунд. Если МК принимает данные, то опрос уровня в шине он должен сделать на промежутке от 13-й до 15-й микросекунде тайм-слота. МК должен обеспечить интервал между отдельными тайм-слотами не менее 1 микросекунды (лучше — больше, максимальное значение не ограничено).
Важно понимать, что следует очень тщательно подходить к обеспечению в шине 1-Wire требуемых временных интервалов, т.к., например, увеличение длительности тайм-слота вывода «0» свыше рекомендованного значения может привести к ошибочному восприятию этого тайм-слота, как сигнала RESET, и, разумеется, после этого вся процедура обмена пойдет насмарку. Но так же следует учитывать влияние самой линии на длительность фронтов импульсов. Поэтому в общем случае, это не простая задача. Но выполнение несложных рекомендаций позволит ее решить достаточно простыми средствами: во-первых, все сигналы, которые должен формировать МК, следует формировать по принципу необходимого минимума длительности (т.е. немного больше, чем указанная минимальная длительность), а от устройства следует ожидать сигналов по принципу наихудшего (т.е. ориентироваться на самые худшие варианты временных параметров сигнала).
Если вы разрабатываете схему, которая целиком умещается на одной плате вместе со всеми устройствами на шине 1-Wire, то, ориентируясь на самый первый рисунок, вы получите практически идеальную линию: фронты нарастания высокого уровня в шине будут минимальными — это избавит вас от большинства проблем. Но если Вы подключаете несколько устройств через длинный соединительный шлейф — придется бороться с погонной емкостью линии.
Мною проверено, что соединение по свитым вручную обычным монтажным проводам при типовом подтягивающем резисторе однозначно возможно на расстоянии до 9 м, а для соединения по очень длинной телефонной «лапше» может потребовать уменьшения подтягивающего резистора до 510 ом и даже менее.

Разобравшись с процедурами обмена битами, пора приступать к более высокому уровню протокола обмена информацией, и для этого необходимо рассмотреть принципы адресации устройств и управления ими.
Каждое устройство 1-Wire обладает уникальным идентификационным 64-битным номером, программируемым на этапе производства микросхемы. Уникальным — это значит, что фирма-производитель гарантирует, что не найдется двух микросхем с одинаковым идентификационным номером (по крайней мере в течении нескольких десятков лет при существующих темпах производства).
При рассмотрении протокола обмена мы будем исходить из принципа, что на шине 1-Wire имеется более одного устройства. В этом случае перед МК встают 2 проблемы: определение количества имеющихся устройств и выбор (адресация) одного конкретного из них для обмена данными. Решение первой проблемы осуществляется двумя путями: универсальным и гибким, но требующим довольно сложного программно-реализуемого алгоритма, и простым, но с большими ограничениями. Универсальный алгоритм мы рассматривать не будем, т.к. это требует отдельной статьи. А более простой заключается в том, что номера всех используемых в вашей схеме 1-Wire-устройств вы должны знать заранее, и просто использовать их как константы в вашей программе. Номера некоторых устройств нанесены прямо на корпусе микросхем (например, для устройств iButton — всем известных ключей-таблеток), а номера других можно определить при помощи специальных программ или устройств (о них в конце статьи). iButton — зарегистрированная торговая марка, права на которую принадлежат Dallas Semiconductor, дополнительная информация об этом семействе изделий на есть на сайте.
Итак, предположим, что мы знаем номера всех устройств 1-Wire на шине. Как же ведется работа с ними? Алгоритм тут следующий. МК посылает, как обычно, импульс RESET, и все имеющиеся устройства выдают PRESENCE. Затем МК посылает в шину команду, которую принимают все устройства. Команд определено несколько общих для всех типов 1-Wire-устройств, а так же могут быть команды, уникальные для отдельных типов. Среди общих команд нас в первую очередь могут заинтересовать следующие (см. табли-цу).

Команда

Значение байта

Описание

SEARCH ROM

Поиск адресов — используется при универсальном алгоритме определения количества и адресов подключенных устройств

READ ROM

Чтение адреса устройства — используется для определения адреса единственного устройства на шине

MATCH ROM

Выбор адреса — используется для обращения к конкретному адресу устройства из многих подключенных

SKIP ROM

Игнорировать адрес — используется для обращения к единственному устройству на шине, при этом адрес устройства игнорируется (можно обращаться к неизвестному устройству)

Первую команду мы не станем рассматривать по ранее изложенной причине, вторая позволит вам определить адрес имеющихся у вас устройств перед их установкой в готовое изделие, а две последние наверняка станут основными в вашей работе.
После того, как МК выдаст команду READ ROM, от устройства поступит 8 байт его собственного уникального адреса — МК должен их принять. Учтите, что любая процедура обмена данными с устройством должна быть завершена полностью либо прервана посылкой сигнала RESET.
Если отправлена команда MATCH ROM, то после нее МК должен передать так же и 8 байт конкретного адреса устройства, с которым будет осуществляться последующий обмен данными. Это равносильно выставлению адреса на параллельной шине в микропроцессорных устройствах. Приняв эту команду, каждое устройство сравнивает передаваемый адрес со своим собственным. Все устройства, адрес которых не совпал, прекращают анализ и выдачу сигналов в линии 1-Wire, а опознавшее адрес устройство продолжает работу. Теперь все данные, передаваемые МК будут попадать только к этому «адре-сованному» устройству. То, какие именно данные надо послать в устройство или получить от него после его адресации, зависит от конкретного устройства и в настоящей статье не рассматривается (например, для упомянутого термометра это могут быть команды запуска измерения или считывания результата, для ключа-таблетки не определены никакие иные команды, кроме основных, а для микросхем АЦП дополнительных команд может быть около десятка).
Если устройство одно на шине — можно ускорить процесс взаимодействия с ним при помощи команды SKIP ROM. Поучив эту команду, устройство сразу считает адрес совпавшим, хотя никакого адреса за этой командой не следует. Некоторые процедуры не требуют приема от устройства никаких данных, в этом случае команду SKIP ROM можно использовать для передачи какой-то информации сразу всем устройствам. Это можно использовать, например, для одновременного запуска цикла измерения температуры несколькими датчиками-термостатами типа DS18S20.
Прием и передача байтов всегда начинается с младшего бита. Порядок следования байтов при передаче и приеме адреса устройства так же ведется от младшего к старшему. Порядок передачи другой информации зависит от конкретного устройства, поэтому следует обращаться к документации на применяемые вами устройства.

В завершение обзора интерфейса рассмотрим детально строение уникального 64-битного номера-адреса устройств 1-Wire. Он состоит фактически из 8 отдельных байт: одного байта идентификатора семейства, шести байт (48 бит) собственно уникального адреса и одного байта контрольной суммы всех предыдущих байтов. Рассмотрение этих составных частей начнем, по традиции, в обратном порядке.
Итак, контрольная сумма или CRC — это байт, значение которого передается самым последним и вычисляется по специальному алгоритму на основе значения всех 7-и предыдущих байтов. Алгоритм подсчета таков, что если все байты переданы-приняты без искажений (а искажения вполне возможны, если вспомнить характер аппаратной реализации интерфейса), принятый байт контрольной суммы обязательно совпадет с рассчитанным в МК (или устройстве) значением. Т.е. при реализации программного алгоритма обмена информацией мы должны при передаче и приеме байтов подсчитывать их контрольную сумму по строго определенному алгоритму, а затем либо передать полученное значение (если мы вели передачу адреса/данных), либо сравнить расчетное значение с принятым значением CRC. Только при совпадении обоих CRC МК или устройство считают принятые данные достоверными. В противном случае продолжение обмена невозможно.
Очевидно, что алгоритм подсчета CRC должен быть одинаковым как для МК, так и для любого устройства. Он «стандартизирован» и описан в документации. Однако его понимание требует определенных умственных усилий и, что лично для меня более критично, наличия времени, которого постоянно не хватает. Именно поэтому я не стану описывать сам алгоритм расчета (все желающие могут познакомиться с ним по фирменному документу Application Note 27 «Understanding and Using Cyclic Redundancy Checks with Dallas Semiconductor iButtonTM Products»), а просто приведу примеры программной реализации этого алгоритма, которые можно использовать не особо углубляясь в математические дебри. Разумеется, вы легко сможете адаптировать приводимые примеры под свои нужды. Кстати, по этим примерам можно восстановить и алгоритм расчета CRC.

Пример первый: ассемблер MCS-51. Подпрограмма расчета CRC.
Эта подпрограмма использует одну ячейку памяти CRC для хранения результата. Перед первым вызовом эту ячейку необходимо обнулить. В аккумуляторе — очередной принятый или передаваемый байт. После того, как все байты переданы/приняты в ячейке CRC получится контрольная сумма. Подпрограмма не портит никаких регистров, кроме регистра состояния.

DO_CRC:
PUSH ACC ; сохраняем аккумулятор
PUSH B ; сохраняем регистр В
PUSH ACC ; сохраняем байт данных
MOV B, #8 ; кол-во битов (счетчик циклов)
CRC_LOOP:
XRL A, CRC ; XOR с предыдущим значением контрольной суммы
RRC A ; сдвиг вправо через флаг переноса
MOV A, CRC ; берем последнее значение CRC
JNC ZERO ; переход, если не было переноса
XRL A, #18H ; обновляем значение CRC путем XOR с константой
ZERO:
RRC A ; снова сдвигаем CRC
MOV CRC, A ; сохраняем новое значение CRC
POP ACC ; восстанавливаем байт данных
RR A ; циклически сдвигаем вправо
PUSH ACC ; снова сохраняем значение
DJNZ B, CRC_LOOP ; повторяем цикл 8 раз (для каждого бита)
POP ACC ; очищаем стек
POP B ; восстанавливаем прежние значения регистров из стека
POP ACC
RET ; завершение процедуры

Использование этой (да и последующей) подпрограммы очень простое: перед началом приема или передачи надо обнулить ячейку CRC, а затем каждый принятый или переданный байт поместить в аккумулятор и вызвать эту подпрограмму. После того, как приняты все 8 (обратите внимание — именно 8!) байтов уникального адреса устройства, необходимо проверить содержимое ячейки CRC: ненулевое ее значение свидетельствует о наличии искажения принятых данных. Если же CRC=0 — это значит, что данные приняты без искажений. Если же МК вел передачу уникального адреса устройства, то содержимое CRC должно быть передано 8-ым байтом после предыдущих семи.

Пример второй: процедура на языке Pascal с использованием табличных вычисле-ний CRC. Как и предыдущая, эта процедура должны быть вызвана для каждого передаваемого/принимаемого байта, а перед первым использованием переменная CRC должна быть обнулена.

Var
CRC : Byte; {переменная-результат расчета контрольной суммы}

Procedure Do_CRC(X: Byte);
{Эта процедура вычисляет контрольную сумму по стандартному алгоритму для устройств 1-Wire и накапливает результат в глобальной переменной CRC}

Const
{Нижеследующая таблица содержит заранее вычисленные сигнатуры, используемые для быстрого расчета CRC}

Begin
CRC := Table;
{Расчет заключается в простом извлечении результата из таблицы}
End;

Как видите, табличный метод расчета значительно проще алгоритмического математического, и обладает существенно большим быстродействием, однако требует гораздо больше памяти программ для хранения таблицы.
Поклонники языка Си без проблем смогут адаптировать паскалевскую процедуру в аналогичную функцию на Си.
В качестве дополнительной информации скажу, что для обмена информацией (не для адресации) с некоторыми типами устройств применяется 16-разрядная CRC, алгоритм вычисления которой немного сложнее, но так же описан в упомянутом ранее документе.

Итак, мы разобрались с алгоритмом расчета контрольной суммы уникального адреса устройства, однако это всего лишь один последний байт из 8 байтов этого адреса, необходимо рассмотреть и остальные. Предыдущие 6 байтов (помните, что мы рассматриваем байты адреса в обратном порядке?), собственно, и есть тот самый уникальный номер-идентификатор. Номер — он и есть номер, рассказывать о нем нечего, переходим к заключительному первому байту — коду семейства.
Код семейства определяет номер группы, к которой принадлежит конкретное устройство и для микросхем одного семейства, естественно, будет одинаковым. Зная (считав) код семейства из неизвестного устройства можно довольно точно определить его функциональное назначение и даже некоторые параметры. Приведу список некоторых кодов семейств 1-Wire-устройств (таблица ниже).

В этой таблице, содержащей неполный перечень семейств 1-Wire-устройств, во втором столбце в скобках указаны типы микросхем в корпусах-таблетках iButton, а без скобок — в различных корпусах для монтажа на плату. Как видите, ассортимент устройств весьма широк.

И напоследок несколько слов о так называемом «паразитном питании» устройств 1-Wire. Спецификация этих устройств допускает их питание от самой линии данных, т.е. микросхема может получать питание по собственной (и единственной) линии данных! Не все устройства поддерживают такой режим питания, но очень многие, например, тот же термометр-термостат DS18S20 или ключ-таблетка DS1990A. Теперь вам должно быть понятным, почему низкий уровень сигнала в шине 1-Wire имеет такие жесткие временные рамки — десятки микросекунд. Это связано с необходимостью обеспечивать питанием те устройства, которые получают его от шины. Потребление тока всех устройств 1-Wire такое ничтожное, что емкости встроенных конденсаторов достаточно для поддержания в рабочем состоянии схемы устройства в течение небольшого интервала, когда в шине 1-Wire низкий логический уровень.
Следует помнить, что при паразитном питании возможности устройств несколько уменьшаются, что проявляется в ухудшении работы на линию с большой собственной емкостью (т.е. линию большой протяженности). Поэтому связь с устройствами, использующими паразитное питание, возможна на относительно небольших расстояниях.
Кроме того, паразитное питание часто сопровождается дополнительными побочными эффектами, которые описываются в документации на конкретные изделия. Чтобы не морочить голову со всеми этими проблемами, я рекомендую по возможности отказаться от этого экзотического способа питания устройств 1-Wire. Эта простая рекомендация позволит вам сохранить кучу нервов.

Вот и все необходимые для начала работы сведения об интерфейсе 1-Wire, протоколе обмена данными по нему и его программной реализации. Надеюсь, этих сведений будет достаточно для того, чтобы количество проблем, возникающих у вас при освоении этого интерфейса, пошло на убыль. Напомню основные шаги по его успешной реализации:

  • любой обмен информацией начинается с передачи импульса RESET и приема имульса PRESENCE;
  • если импульса PRESENCE не обнаружено — на шине нет устройств;
  • МК всегда инициирует обмен, начиная каждый тайм-слот обмена битом информации;
  • временные параметры каждого тайм-слота следует соблюдать с максимально возможной точностью;
  • для выбора одного из многих устройств на шине 1-Wire МК должен передать в шину команду MATCH ROM и затем 8 байт адреса устройства, последний (8-й) байт этого адреса — есть контрольная сумма предыдущих семи;
  • если устройство на шине одно — МК может узнать его адрес путем посылки команды READ ROM, после чего принять от устройства 8 байтов адреса, последний из которых так же будет контрольной суммой первых семи;
  • для работы с единственным устройством на шине можно отказаться от указания его адреса, для этого МК должен передать устройству команду SKIP ROM, после чего можно начинать обычный обмен данными;
  • любая начатая процедура обмена может длиться сколь угодно долго за счет пауз между отдельными тайм-слотами, но всегда должна быть завершена полностью;
  • прервать начатый обмен можно в любой момент путем выдачи импульса RESET в шину 1-Wire (но это может нарушить нормальную работу некоторых устройств).

Реализация

Топология микросхемы DS2401Z, работающей по 1-Wire (хранит уникальный идентификатор)

Устройство 1-Wire может находиться как на печатной плате вместе с устройством управления, так и отдельно. Иногда они предназначены лишь для поддержки устройств 1-Wire, но во многих коммерческих приложениях устройство 1-Wire — просто один из чипов, создающих нужное решение. Иногда они присутствуют, например, в аккумуляторных батареях ноутбуков и сотовых телефонов.

Некоторые лабораторные системы и другие системы сбора данных и управляющие системы подключают к устройствам 1-Wire, используя шнуры с модульными разъёмами или с кабелем CAT-5, с устройствами, установленными в разъём, включёнными в небольшую печатную плату, или присоединёнными к исследуемому объекту. В таких системах популярен разъём RJ11 (6P2C или модульные разъёмы 6P4C, обычно используемые для телефонов).

Системы датчиков и приводов могут быть связаны компонентами 1-Wire, каждый из которых включает в себя всё необходимое для функционирования шины 1-Wire. В качестве примера можно привести термометрию, таймеры, датчики напряжений и токов, контролирование батарей, и память. Они могут быть подключены к ПК при помощи преобразователей шины. Последовательные интерфейсы USB, RS-232, и параллельный интерфейс (LPT) являются популярными решениями для соединения MicroLan с ПК. MicroLan также является интерфейсом для микроконтроллеров, таких, как Atmel AVR, Parallax BASIC Stamp и семейство Microchip PIC. Однако аппаратной поддержки этой шины микроконтроллеры (AVR, PIC и другие), как правило, не имеют, и работа с шиной реализуется программно, с использованием сторонних библиотек (вроде Arduino и других), либо программист, имея спецификацию, может разработать сам необходимую функциональность.

iButton

Основная статья: Контактная памятьiButton на связке ключейiButton на кольце

Некоторые устройства помещают в небольшие корпуса из нержавеющей стали (MicroCAN), внешне похожие на маленькие литиевые батарейки для часов или небольшие конденсаторы. Устройства в таких корпусах называются «iButton», в просторечии — «таблетки».

iButton (также известна под названиями «dallas key», «touch memory») — стандарт механической упаковки, в котором компонент 1-Wire размещается внутри небольшой «таблетки» из нержавеющей стали и подключается к системам шины 1-Wire посредством розеток с контактами, которые касаются «крышки» и «дна» таблетки. Связь может быть полупостоянной с другим типом разъёма; iButton легко вставляется в него и может быть легко удалён.

Применение

Идентификация личности

Замок и ключ, использующие технологию 1-Wire

Каждая микросхема 1-Wire имеет уникальный номер. Это позволяет использовать устройства iButton в качестве простых идентификаторов личности, например, в системах контроля и управления доступом (СКУД). В этом качестве они успешно конкурируют с бесконтактными карточками, использующими технологию RFID.

Имеются устройства iButton с поддержкой криптографии, что позволяет создавать на их основе защищённые хранилища небольших объёмов данных или средства сильной аутентификации. Такие устройства могут конкурировать со смарт-картами в некоторых применениях.

Удалённые датчики физических величин

Устройства 1-Wire очень удобны для измерений. Не требуется отдельного питания, возможно подключить по одному проводу целую гирлянду разнообразных датчиков. Система таких датчиков легко контролируется на предмет аварий. Записи о калибровках могут храниться прямо в датчиках.

Измерение температуры — одно из самых массовых применений 1-Wire устройств. В сельском хозяйстве применяется для многоточечного контроля температуры в теплицах, ульях, элеваторах, инкубаторах, овощехранилищах. Популярны домашние метеостанции, подключаемые по этому интерфейсу.

Маркировка оборудования

Микросхемы 1-Wire популярны для маркировки и хранения параметров дополнительного оборудования к установкам. Например, медицинские и лабораторные приборы, использующие в работе множество различных сменных головок и датчиков, снабжаются микросхемой. При подключении прибор сразу распознаёт сменную головку и корректно устанавливает режим работы. Аналогично может контролироваться наработка узлов с ограниченным ресурсом.

Другие применения

Существуют решения iButton для охраны недвижимости, для систем обнаружения проникновения, другое использования. Есть также системы для доступа в менее очевидных областях безопасности. Например, iButton может быть использован для аутентификации пользователей компьютерных систем (аппаратный ключ в системах защиты информации), или в системе табельных часов.

Умный дом для чайников

Мониторинг здоровья и уход за близкими. Возможность «негласно следить» за пожилыми жильцами с целью оперативного реагирования на нестандартное поведение. В случае отклонений от привычного поведения стариков система может оповестить об этом. Это помогает старикам не чувствовать себя обузой и при этом всегда находиться под наблюдением. Информированность о том, чем занимаются ваши дети, пока вы отсутствуете дома, добавит взрослым членам семьи спокойствия.

Автоматизация. Многие путают термины «умный дом» и «домашняя автоматизация». Действительно, без автоматики сделать «умный дом» невозможно. Автоматизация позволяет снять с человека различные обязанности, например включение и выключение света в коридоре. Это действие легко автоматизируется датчиком движения и реле. Управление отоплением удобно автоматизируется расписанием или даже датчиками, распознающими присутствие жильца в доме. Вместо того чтобы бегать и подкручивать терморегуляторы по всему дому, достаточно один раз настроить систему. Но по-настоящему уникальной автоматика станет, когда сможет без предварительной настройки сама понимать, что вам от нее нужно. «Умный дом» должен сам догадываться, какой свет, в какой комнате и как включить, или, в крайнем случае, спросить хозяина.

Конфигурируемость. Это весьма недооцененное свойство «умных домов». Возможность изменить настройки и связи позволит жильцам адаптировать «умный дом» к меняющимся жизненным ситуациям. Появление детей или перестановка нередко требуют не только изменения настроек, но даже изменения расположения выключателей и датчиков. На помощь придет топология «звезда» с настройкой всего в одной точке (контроллере) и радиопротоколы, такие как Z-Wave, позволяющие не привязывать выключатели и датчики к проводам, а располагать их в любом месте. «Умный дом» должен развиваться вместе с домовладельцами.

И наконец, удаленный доступ. Возможность управлять инфраструктурой дома, находясь в поездке или на работе, очень удобна. Например, запустить зимой отопление в загородном доме или кондиционер жарким летом. Мониторинг текущего состояния дома позволит избежать неприятных ситуаций, связанных с погодой, например замерзания водяных труб в сильные морозы.

Рейтинг лучших умных электрочайников 2018-2019

Новые технологии нынешнего века наделяют даже простые, привычные приборы, такими возможностями, которые несколько десятков лет назад было сложно представить. Сегодня стало возможным обустроить «умный» дом или квартиру, в которых всё автоматизировано и управляется с пульта или с телефона ещё по дороге домой.

«Интеллектуальный» дом не всем по карману, но начать можно с «умного» электрочайника!

Знакомьтесь: «умный» электрочайник.

Такой прибор соединяется с компьютером, планшетом или телефоном посредством Bluetooth или Wi-Fi, и на расстоянии передаёт пользователю показания о своей работе. Смарт-чайники позволяют подогреть или закипятить воду, пока вы подходите к дому. Находясь в другой комнате, можно на расстоянии проверять температуру в вашем чайнике и поддерживать её. С утра есть возможность включить чайник, не вставая из постели. Когда чайник приготовит воду, вы получите от него сообщение на ваше устройство.

  • Такой чайник знает, какой должна быть температура воды для разных видов чая.

А для молодых мам он станет настоящим другом: чайник будет поддерживать тёплой воду для детской смеси (38-40 градусов) столько времени, сколько будет нужно.

  • Приложения для таких электрочайников совместимы с Windows, Linux, Mac — и всеми современными смартфонами.

Интегрировать в систему автоматизированного дома такой прибор не составит труда. В холодное зимнее утро ваш новый друг будет ждать вас на кухне с горячей водой, создавая приятное настроение.

Как только чайник закипит, он «дождётся», пока вода достигнет необходимой температуры для заваривания чая, и сообщит вам об этом. После чайник будет поддерживать установленную температуру. Кипятить воду по несколько раз смарт-чайник не станет!

Как работает «умный» электрочайник?

Современная технология управления Ready for Sky – к вашим услугам. Вам нужен Bluetooth, а также сравнительно новый гаджет на операционной системе Android или iOS.

Скачав бесплатную программу Ready for Sky на русском языке, вы быстро подружитесь со своим новым устройством. Через «поиск устройств» вы быстро подключитесь к смарт- чайнику. Кстати, производители заверяют, что управлять подобным чайником на вашей кухне уже возможно из любой точки планеты, если установить на гаджет утилиту R4S Gateway.

Выбираем «умный» чайник.

  1. К вашему удивлению, стоимость супер-прибора не будет превышать стоимость самых дорогих моделей чайников, но не обладающих вышеперечисленными функциями.
  2. Подобных моделей на рынке представлено не так уж много, так что выбор не будет сложным. В этой статье мы обратим ваше внимание на самые популярные.
  3. Корпус смарт-чайника может быть металлическим или пластиковым. При выборе, это дело вашего вкуса. Лучше выбирать чайники с ёмкостью для воды из нержавеющей стали или особого стекла.
  4. Мощность нагревательного элемента вашего нового устройства важна. Рекомендуется мощность до 2300 Вт.
  5. Нагревательных элементов может быть два. В таких чайниках они обычно находятся под дном ёмкости и непосредственно не контактируют с водой, что делает её более качественной для питья.
  6. Несколько режимов работы смарт-чайника помогут вам организовать свой день. Режим «турбо» хорош, когда вы торопитесь; а в тихом режиме чайник может работать, если в квартире кто-то отдыхает.
  7. Дополнительно вы получите таймер и/или светильник.

умные электрочайники 2018-2019

Лучшими умными электрочайниками 2019 года, по отзывам покупателей, станут три модели, с которыми мы ознакомим вас ниже.

3-е место: REDMOND SkyKettle G210S (от 3495 руб.)

Один из наших героев − REDMOND SkyKettle G210S. Это инновационный прибор, поддерживающий приложение Ready for Sky. Вами могут быть использованы стандартные температурные режимы чайника, либо самостоятельно задана любая температура. Чайник может поддерживать температуру воды до 12 часов.

В режиме «турбо» можно очень быстро закипятить воду для варки крупы или картофеля, чтобы не ждать, пока вода закипит в кастрюле. Cделать это вы сможете ещё по пути домой.

Режим «свежая вода» − ещё одна отличная опция данной модели. Чайник порекомендует вам, когда будет желательно сменить воду.

В приложении, с помощью «Статистики», вы сможете узнать, сколько раз чайник подогревал воду и расход электроэнергии!

Книга рецептов приготовления чая – приятное дополнение к приложению Ready for Sky.

SkyKettle G210S – это не только «интеллектуальный» чайник, но и:

  • ночник,
  • светильник,
  • и даже светомузыка!

Режим «диско-чай» вас удивит. Задайте периодичность смены цветов и включите зажигательную (или спокойную) музыку – и чайник создаст атмосферу в вашем доме. Кстати, режим подсветки может работать как параллельно с нагреванием воды, так и без него.

Чайник (при работе с приложением) оснащён развивающими играми для ребёнка! Три игры на запоминание цвета, для тренировки памяти и внимания порадуют вас и ваших детей. При этом, детям не нужно дотрагиваться до чайника, и за этим надо следить.

Технические характеристики REDMOND SkyKettle G210S:

  • Мощность −1850-2200 Вт,
  • Защита от поражения электротоком — класс I,
  • Материал корпуса – жаропрочное стекло,
  • Стальной нагревательный элемент,
  • Нагревательный элемент – скрытый,
  • Объём – 1,7 л.,
  • Автоотключение,
  • Светодиодная звуковая подсветка.

Плюсы:

  • мощность,
  • удалённое управление,
  • хорош для молодых мам,
  • отличный режим поддержания температуры,
  • дизайн,
  • вместимость,
  • термоизоляция корпуса.

Минусы (по отзывам пользователей):

  • долго не отключается после закипания (около 30 секунд),
  • приложение не очень точно отображает температуру,
  • иногда необходимо переустанавливать приложение,
  • маркий пластик – необходим регулярный уход.

Отметим, что у производителя REDMOND несколько моделей смарт-чайников: кроме описанного выше G210S стоит упомянуть G211S, G201S, G200S, M173S-E и M171S — но все они отличаются преимущественно дизайном, но не функционально.

2-е место: Element El’Kettle WF11MB (4300 руб.)

Смарт-чайник Element El’Kettle WF11MB хорош 5-ю температурными режимами и очень представительным видом. Такой чайник гармонично вписывается в интерьер современной кухни, станет частью автоматизированного дома или украсит собой обычный дом. Модель, без преувеличения, прекрасна эстетически. Дисплей также красивый и информативный. Температурная шкала Touch line и две кнопки подсвечиваются. Информативная шкала показывает текущую температуру воды. Ручка покрыта силиконом Soft-touch. Чайник вращается на подставке на 360° − технология STRIX (Великобритания).

Прибор понравится всем: любителям белого и зелёного чая, холостякам и семьям с детьми. Чайник имеет несколько уровней защиты, и, конечно же, управляется удалённо с помощью компьютерного приложения!

Технические характеристики Element el’kettle WF11MB:

  • Мощность − 2200 Вт,
  • Блокировка включения без воды,
  • Материал корпуса – сталь,
  • Нагревательный элемент – скрытый,
  • Объём – 1,7 л.,
  • Автоотключение,
  • Вес – 1,35 кг,
  • Терморегулятор,
  • Индикатор уровня воды,
  • Отсек для шнура.

Достоинства:

  • функциональность,
  • дизайн,
  • удалённое управление,
  • удобно наливать воду,
  • крышка закрывается мягко,
  • материал (металл),
  • эргономичная ручка.

Недостатки (по отзывам пользователей):

  • дорого, качество не соответствует стоимости,
  • сенсорные кнопки ручного управления со временем плохо работают,
  • иногда необходимо выключать чайник из розетки, чтобы сенсорные кнопки на корпусе работали нормально,
  • видны капли на корпусе (маркий),
  • запотевает стеклянное окошко вверху,
  • необходимо протирать поверхность платформы от воды, иначе срабатывает защита, и приходится выключать из розетки.

1-е место: умный чайник Xiaomi Mi Smart Kettle (3390 руб.)

Xiaomi Mi Smart Kettle – ещё одна модель «интеллектуального» чайника, на которую стоит обратить внимание. Внешний корпус выглядит приятно. Дизайн прост и лаконичен: впишется в абсолютно любую кухню. Он выполнен из качественного пищевого полипропилена. Модель оснащена трёхуровневой защитой. Утечка тока исключена даже при контакте с водой.

Вам понравится носик чайника: он выполнен так, чтобы вода из него лилась равномерно и не разбрызгивалась. Прибор закипает за 5 минут и автоматически отключается, если в нём нет воды. Все элементы модели, соприкасающиеся с водой, изготовлены из экологичной нержавеющей стали 304 от производителя Pohang Iron and Steel Company (Posco).

«Интеллектуальный» нагрев воды поможет приготовить любой сорт чая правильно.

Технические характеристики Xiaomi Mi Smart Kettle:

  • Мощность − 1800 Вт,
  • Защита от поражения электротоком,
  • Материал корпуса – пищевой полипропилен,
  • Стальной нагревательный элемент,
  • Нагревательный элемент – скрытый,
  • Объём – 1,5 л.,
  • Автоотключение,
  • Блокировка крышки,
  • Звуковой сигнал,
  • Двойной корпус (теплоизоляция),
  • Термоконтроллер STRIX (Великобритания),
  • Работает с приложением «Ми-Хом» через Bluetooth

Преимущества:

  • хорошая сборка,
  • качество материалов,
  • легко моется и чистится внутри,
  • быстро кипятит,
  • долго держит тепло (до 12 часов),
  • автоматическое выключение,
  • крышка открывается плавно,
  • точно указывает температуру,
  • удобное хранение электрошнура (под днищем),
  • регулировка длины электрошнура,
  • вода не разбрызгивается.

Недостатки (на основе покупательских отзывов):

  • плохая инструкция,
  • вилка питания (КНР) не работает без переходника,
  • приложение соединяется с чайником, только если выбрать регион «Китай»,
  • нет индикатора для удалённого включения.

Подведём итоги.

Концепция «умного дома» в современном ритме жизни приобретает всё большее значение. Стиральные машины, холодильники, динамики, роутеры, детекторы дыма, кормушки для животных, кофеварки, камеры наблюдения, телевизоры, дверные звонки и замки, и даже розетки могут управляться удалённо! Интернет вещей входит в нашу жизнь, чтобы сделать её проще и ярче. Это уже не просто экономия времени, а ежедневная радость от пользования вещами, которые нас окружают. Подружившись с «умными» электрочайниками, благодарные пользователи уже не представляют жизни без таких помощников. Смарт-чайник – довольно простой, но очень полезный прибор, который принесёт комфорт в любой дом.

Вообще в тренде оптимизация своего времени: если можно что-то автоматизировать — то это нужно сделать. Именно потому на кухнях уже полноценно обосновались не только мульти— и пароварки, а и сильно облегчающая жизнь крупная техника: стиральные и посудомоечные машины. Многие из которых продолжают концепцию «умного дома».

В фильмах часто демонстрируется жилое помещение, которое как будто живет своей жизнью. Лампочки загораются по мановению руки, открываются шторы, после определенного слова играет музыка. Все это оборудования является интеллектуальной домашней системой, и мы предлагаем рассмотреть, как сделать умный дом своими руками, что для этого нужно, а также какова схема такой системы.

Умный дом – что это

Умный дом – это домашняя автоматика, которая является жилым расширением автоматизации зданий. Главная автоматизация может включать централизованное управление освещением, ОВК (отопление, вентиляция и кондиционирование воздуха), бытовую технику, открывать замки ворот, дверей, GSM и других систем, чтобы обеспечить улучшенное удобство, комфорт, энергоэффективность и безопасность. Нужно отметить, что для некоторых категорий населения (пожилых людей, инвалидов) это мероприятие может стать необходимым.

Фото – Умный дом идеи распределения

Содержание дома напрямую зависит от потребностей хозяев. Несмотря на все рекламные компании, безопасность систем значительно преувеличена. Осуществляется сильная нагрузка на электрощиток, это может быть опасно, если в квартире слабая разводка. Кулаков советует для начала поменять полностью проводку.

Фото – Простой умный дом

С новейшим внедрением в нашу жизнь SMART технологий, многие уже не представляют свою жизнь без автоматических установок, программного оборудования, нам необходим беспроводной интернет, бытовые приборы.

Домашняя автоматика относится к использованию компьютерных и информационных технологий для управления бытовой техникой и их функциями. Она может варьироваться от простого дистанционного управления освещением до сложных сетей на базе компьютера/микро-контроллера с разной степенью интеллекта и автоматизации. Домашняя автоматика преимущественно должна быть максимально простой.

Фото – Умный дверной замок

Достоинства использования «умного дома» в квартире на базе PIC или WAVE:

  1. Экономичный расход времени на ежедневную настройку разнообразных механизмов, прием звонков, рассылку почты;
  2. Использование газообразных или жидких топливных материалов, а позже использование электричества, позволило увеличить автоматизацию в системах отопления, уменьшая рабочую силу, необходимую, для ручной дозаправки обогревателя и печи.
  3. Развитие термостатов позволило настроить более автоматизированное управление отопление, а позже охлаждение;
  4. Так часто осуществляется охрана промышленных объектов, жилых помещений;
  5. По мере увеличения числа управляемых устройств в доме поднимается их взаимосвязь. Например, печь может отправлять уведомления, когда он нуждается в чистке, или холодильник, когда он нуждается в обслуживании.
  6. В простых установках, smart может включать свет, когда человек входит в комнату. Также в зависимости от времени суток, телевизор может настраиваться на нужные каналы, выставлять температуру воздуха, освещение.

Умный дом может предоставить интерфейс-доступ к бытовой технике или автоматизации, чтобы обеспечить контроль и мониторинг на Вашем смартфоне, через сервер, мини Smart для iPhone, iPod touch, а также при помощи переносного компьютера (необходим специальный soft: AVR Studio).

Фото – Контроль дома через планшет

Видео: система Schneider Electric умного дома

Элементы умного дома

Элементы домашней автоматизации включают в себя датчики (например, температуры, дневного света или обнаружения движения), контроллеры и приводы, таких как моторизованные клапаны, выключатели, двигатели и другие.

Фото – Схема управления дома

ОВК

Это отопление, вентиляция и кондиционирование воздуха, ОВК может контролировать температуру и влажность, к примеру, термостат интернет-контроля позволяет домовладельцу удаленно управлять системами отопления и кондиционирования воздуха здания, система может автоматически открывать и закрывать окна, включать радиаторы и котлы, теплый пол.

Освещение

Эти механизмы управления освещением могут быть использованы для управления бытового света, техники. Также сюда можно отнести систему естественного освещения, работу жалюзи или штор.

Фото – Схема умного дома

Аудио-визуальная

Эта категория включает в себя аудио-, видеосигналы для безопасности. Сюда входят:

  • Эффект присутствия дистанционного управления (Это самая современная технология, которая применяется для увеличения безопасности). Заключается в зажигании света, музыкальном сопровождении.
  • Имитация присутствия
  • Регулирование температуры
  • Регулировка яркости (электросветильники, уличное освещение)
  • Безопасность (сигнализация, жалюзи).

Как сделать умный дом

Интеллектуальную систему можно сделать своими руками, самый бюджетный вариант – это настройка контроля освещения в доме или включения компьютера.

Фото – Вариант управления умным домом

Чтобы сделать лампу, которая будет «сама» загораться, к ней понадобится подключить специальное оборудование. Есть несколько вариантов решения это задачи:

  1. Установить акустическое реле (1 или x10-wire);
  2. Присоединить диммер;
  3. Подключить датчик движения.

Проще всего работать с датчиком. Его продажа осуществляется в любом интернет-магазине, можно купить канальный прибор, можно разработать свой собственный по своим параметрам. Единственное замечание, нельзя устанавливать с таким прибором лампу накаливания, она может не выдержать нагрузки и взорваться, лучше работать со светодиодной.

Фото – Концепция умного дома

Еще один «умный» бесшумный вариант – это диммер. Здесь Вам понадобится прикоснуться к лампе, в зависимости от количества прикосновений, говорящий прибор будет менять яркость. Это очень удобно использовать на лампе в спальне, детской.

Чтобы настроить контроль и регулирование температуры, нам понадобится многоканальная система. Центральная схема контроля температуры и влажности состоит из:

  • Датчиков (ds1820), которые измеряют физическое состояние жидкости, воздуха.
  • Контроллеров (rfm12), которые могут быть простыми физическими компонентами и сложными устройствами специального назначения или встроенных компьютеров.
  • Приводов люнекса, которые реагируют на сигналы контроллеров.

Самый современный способ – это купить все составляющие умного дома, провода, термостаты. После установить приборы в каждой комнате, по терморегулятору на радиатор и один на котел. Также понадобится управляемый блок, или «мозг» всей системы. Его рекомендуется смонтировать на входной трубе отопления.

Фото – Система умного дома

Наиболее просто осуществляется монтаж системы видеонаблюдения и сигнализации. Принципиальные положения установки систем безопасности:

  1. Нужно подключить датчики на окнах, дверных проемах, там электрика будет самой продуктивной;
  2. Сложнее всего подбирается плата, от неё зависит контроллер умного дома, работа посредственных деталей, уровень сигналов;
  3. Многие специалисты считают, что монтировать индикаторы нужно на уровне пола. Где-то см 20 от плинтуса, это повышает эффективность;
  4. Желательно установить постоянный мониторинг, установить цифровую систему контакта со службой охраны. Часто ответственными хозяевами устанавливается специальная программа к себе на персональный компьютер, которая позволяет контролировать работу системы из любой точки, где есть интернет (так советует поступить Елена Тесля и её книга: «Умный дом: как сделать своими руками», также там есть и другие решения). Можно подключить sms-оповещения.

Умный дом – это очень удобный способ сделать свою жизнь проще, часто целая система покупается полностью (Arduino, KNX, Linux).

Стоимость каждой системы индивидуальна. Самые популярные марки следующие: beckhoff, gira, lpt, redeye, Smart Switch IOT screen, teleco. Мы рекомендуем, перед тем, как построить такое жилье, посоветоваться со специалистами, они помогут вычислить уровень нагрузки, рассчитать потребляемую мощность.

Фото – Управление светом через телефон

Чтобы почерпнуть идеи, можно пролистать В.Н.Гололобов «Умный дом» своими руками, DJVU или PDF, бесплатно посмотреть у нас фото и видео- инструкции, прочитать советы известных мастеров.

Доступные решения – какие они

На сегодняшний день можно выбирать между следующими предложениями:

  • специализированным оборудованием китайского производства и мобильными API приложениями, уровень надежности которых можно улучшить за счет также производимого в Китае недорогого оборудования российского производства и различных настольных систем;
  • российскими комплектующими, которые позволяют собрать практически сколь угодно сложное решение Умный дом с требуемым уровнем надежности и защитой, сделанной своими руками с самостоятельно программируемыми функциями на базе ПК, расширяемую по модульному принципу;

Сначала разберемся, с чего начать и как выбрать комплектующие для вашего «Умного дома». Отметим, что функциональность системы можно расширять по мере необходимости в одном и другом варианте. Необходимый и оптимальный пакет оборудования позволяет управлять освещением и включением/выключением оборудования, обычно осуществляемым не только с пультов, но и программным приложением, установленным на базе ПК или на смартфоне пользователя.

Умная квартира или небольшой дом: как сделать свой быт более комфортным?

Доступные технологии и их особенности

Объективно техника уже стала частью нашей жизни. На сегодняшний день, говоря о технологии «Умный дом» речь идет о развитии технологии Интернет вещей (Internet of Thing, IoT). Это устройства, которые могут быть подключены к Интернет по проводному и беспроводному каналу, во втором случае по Wi-Fi (с радиусом в среднем до 50, в зависимости от передатчика) или Bluetooth (до 10 м).

Wi-Fi и Bluetooth – два стандарта ближней радиосвязи, которые отличаются небольшим радиусом действия и используются в системах домашней автоматизации. Bluetooth может применяться только если между управляющим модулем и устройством не более 10 м, а на практике – не более 3-5 м. Дальность беспроводной передачи Wi-Fi зависит от передатчика и конкретных условий установки, радиосигнал плохо пропускают бетонные перекрытия.

Несмотря на достаточно развитые возможности, производители не занимаются интенсивным внедрением и реализацией подобного оборудования. Основная проблема в том, что повсеместное использование технологии приведет к росту количества IoT-устройств, на которое просто не рассчитана существующая инфраструктура Интернет. В результате желающим установить «Умный дом» у себя в квартире недорого, придется разбираться в тонкостях самостоятельно, не рассчитывая на крупных производителей.

AliExpress – Китай всегда выручит: пакет «Умная квартира своими руками»

Если есть желание внедрить у себя новые решения бытовой автоматизации с низкими затратами, конечно, надо обратиться к производителям, реализующим свою продукцию на AliExpress. На данном портале практически не предлагаются пакеты «Умный дом своими руками и как сделать», но есть необходимое оборудование, которого вполне хватит для необходимого оснащения квартиры или дома.

Итак, минимальный пакет оборудования, который есть в Китае по очень доступной стоимости и приложения в сети – назовем его «Умная квартира своими руками» – включает:

  • управление включением и выключением бытовых приборов и устройств;
  • сенсорные системы;
  • оборудование для управления освещением;
  • устройства для мониторинга и охраны – сигнализации и видеокамеры;
  • API-приложения для смартфонов, доступные бесплатно на Google Play;
  • сетевые облачные приложения, упрощающие подключение и управление домашними приборами.

Оборудование «Умного дома» на AliExpress

Ассортиментный ряд оборудования представлен реле для подключения устройств, диммерами плавного регулирования нагрузки (для освещения и электроотопления) и пакетными системами, включающими управление «климат-контролем», освещением, сигнализацией и иногда видеокамерой. Полный список предложений можно получить, введя в строку поиска портала AliExpress «smart home», «умный дом», «интеллектуальный дом», а также названия двух китайских производителей Lilovo и Sonoff.

Sonoff WiFi Wireless Smart Switch for Smart Home

Sonoff выпускает Wi-Fi реле для дистанционного управления бытовыми приборами со смартфона. Устройство устанавливается на линию с одним или несколькими электроприборами, позволяет включать и выключать подачу электроэнергии со смартфона с помощью мобильного приложения.

Преимущество этого устройства в том, что оно всегда доступно Online, может подключаться через телефонную сеть (PTSN) и позволяет задавать индивидуальную программу работы с помощью 8 встроенных таймеров. Через реле можно управлять работой любого бытового прибора мощностью до 2.2 кВт с помощью мобильного приложения eWeLink, доступного на Google Play IOS и Android.

Продукция Sonoff доступна также в России. Цена в Китае составляет около 6 долларов (без пульта дистанционного управления), в России – 2000 рублей (с пультом). Реле предлагается в двух вариантах на 10 А и 16 А, во втором случае кроме всевозможных бытовых приборов к мобильному приложению может быть подключен котел.

Аналогично работают другие модели электрофурнитуры, позволяющие подключать сразу несколько приборов, например, Sonoff Sensor-AM2301. Причем управление реализуется с разными значениями таймеров.

Производителем выпускаются три модели Wi-Fi реле Sonoff:

  • Sonoff World On – Wi-Fi реле с подключением к мобильному приложению (для бытовых приборов и камер);
  • Sonoff World On TF – Wi-Fi реле с датчиками, например, для системы климат контроля (для котлов и кондиционеров);
  • Sonoff World On RF – Wi-Fi реле с дистанционным управлением, например, для ворот и дверей с магнитными замками.

Sonoff выпускает также сенсорные выключатели-диммеры для приборов освещения с плавной регулировкой, которые одновременно можно подключить к Wi-Fi и мобильному приложению.

Роутер Broadlink для домашней автоматизации

Чтобы устройства были доступны в Интернет их нужно подключить одним из доступных способов. Одним из удачных и недорогих вариантов можно считать роутер для домашней автоматизации Broadlink, поддерживающий 4 типа беспроводной связи WI-FI, IR, RF и 4G.

С его помощью можно подключить все домашние устройства через сим-карту к мобильному интернет. Лучше выбирать услуги оператора с новой инфраструктурой средств связи, в частности, один из пакетов МТС с помегабайтной тарификацией.

Оборудование XIAOMI Умный дом

XIAOMI выпускает целый ряд реле, диммеров, датчиков для автоматизации дома. Прежде всего, стоит обратить внимание на Wi-Fi датчики влажности и температуры, дверные и оконные, «умные» розетки и недорогие IP-камеры. Оборудование этой фирмы отличает простота и ценовая доступность наряду с высоким качеством сборки.

Производитель выпускает пакетные решения для квартир и небольших домов – это Xiaomi Smart Home Suite. Данный пакет широко предложен в России и относится к категории оборудования «люкс». Ценовая категория этих датчиков немного выше, чем устройств от Sonoff.

Сенсорные выключатели Lilovo

Сенсорные выключатели Lilovo работают только с пультами дистанционного управления. Их ключевой особенностью является возможность плавной регулировки освещения, элегантный дизайн и разные цветовые решения. Выключатели этой фирмы могут использоваться для включения и выключения бытовых устройств без подключения к интернет.

Wi-Fi реле российских производителей

В Китае можно приобрести продукцию российских производителей, осуществляющих сборку электрофурнитуры на китайской базе. Российские Wi-Fi реле Smart Home DC доступны по меньшей стоимости, чем Sonoff, и считаются более надежными и безошибочно улавливающими сигнал. Потребительский недостаток реле Smart Home в отсутствии пластикового корпуса, но это самый простой, надежный и недорогой способ интеграции бытовых устройств.

API-приложения для смартфонов на Google Play

  • eWeLink – приложение, которое позволяет подключить условно-бесконечное количество устройств «Умного дома», поддерживает продукцию Sonoff и ряда производителей. К недостаткам относится некоторый лаг запаздывания в российских сетях, к приложению желательно подключаться через интерфейс мобильного провайдера, а не проводные каналы PTSN (телефонной сети общего пользования).
  • Smart Home от Alltek Technology Corp. – это еще одно универсальное мобильное приложение, к которому можно подключить приборы освещения, сигнализацию, отопление и ряд других домашних устройств. Некоторые пользователи о данном приложении отзываются лучше, чем о eWeLink.

На Google Play можно скачать еще целый ряд мобильных приложений для подключения приборов домашней автоматизации, отличающихся разным уровнем универсальности и стабильности.

Облачные системы для управления устройствами

Приборы домашней автоматизации можно подключить с помощью локальных приложений, работающих на базе ПК и в «облаке». Каждый из этих вариантов отличается рядом преимуществ. Приложения в «облаке» рассчитаны на бюджетное использование технологии «Умный дом» с широким набором функций, однако в таких системах остается открытым вопрос безопасности и несанкционированного доступа к домашним устройствам.

Стационарные пакетные предложения в защищенной облачной среде или для ПК рассчитаны на автоматизацию загородных домов, общественных зданий и учреждений. Такое приложение гарантирует высокий уровень безопасности и надежности.

Приложения «Умный дом»:

  • Bitdefender – пакетное приложение для безопасного подключения приборов домашней автоматизации, которое позволяет без рисков использовать функции любого внешнего облака;
  • Friendly-tech.com предлагает ряд продуктов для домашней автоматизации, включая управление IoT устройствами с консолью администратора и пользовательским интерфейсом через мобильные сервисы, в том числе, с использованием облака (IoT SaaS)
  • IoT Home Guide доступен как в пакетном исполнении для довольно крупных систем домашней автоматизации, а также с API-приложений партнеров OpenHAB, Home Assistant и Eclipse SmartHome.

Облака «Умный дом»:

  • Sharp Cloud Smarthome System – развитая облачная система для автоматизации домов, на ней может быть построена сколь угодно сложная система автоматизации как дома, так и целого квартала;
  • Cloud Based IoT Platform GO+ – российская бесплатная платформа с малым количеством пользователей.