Тойота мирай

Media Review

В мире активно идут разработки топлива, которое может заменить бензин и дизель. Каких инноваций стоит ждать в ближайшем будущем — разбиралась РВК.

Создать альтернативу традиционным видам автомобильного топлива ученые пытались не одно десятилетие. Но скорее из спортивного интереса — речи о масштабном выводе разработки на рынок не шло. Запасов бензина и нефти было достаточно. Причем по приемлемым ценам, если не считать периодические скачки. Всерьез о необходимости нового топлива эксперты заговорили в начале 2000-х, когда заметно выросли цены на нефть. Параллельно стали ужесточаться экологические нормы и требования к выхлопам автотранспорта.

Оптимальным ответом на вызовы времени стало предложение гибридных двигателей, которые, кроме бензина, могли бы использовать электричество. Появились и газовые системы. Однако тренд последнего времени — разработка двигателей, которые работают за счет трех источников энергии: аккумуляторных батарей, водородных элементов и суперконденсаторов. Водородные элементы позволяют химически (без пламени) генерировать электричество, а аккумуляторы и конденсаторы его сохраняют. В итоге машина движется за счет накопленной электроэнергии, которую создает газовое топливо.

В отличие от обычных электрокаров, такой автомобиль получает значительный запас хода — даже больше, чем с бензиновым топливом. И это, кстати, актуально для России с ее огромными территориями и слишком холодными для электродвигателей зимами.

Еще одно важное преимущество водородных топливных элементов — то, что они позволяют запустить двигатель быстро без подзарядки аккумулятора, да и в обслуживании такой двигатель, как заверяют разработчики, неприхотливее классического. В целом за счет цены топлива и долговечности водородные машины, по-видимому, должны стать экономичнее для потребителей.

Проект водородного двигателя компании BMW

Варианты технологий

Газовые топливные элементы имеют немало различий. Поэтому компании-разработчики продолжают экспериментировать с вариантами нового двигателя. Самый популярный — топливный элемент с протонно-обменной мембраной. Он отмечается высокой плотностью энергии и быстрым запуском в компактном корпусе. Перспективной считается технология с использованием метанола. Но здесь есть и побочный эффект: углеродный остаток. Водород же в качестве остатка дает воду.

Также топливные элементы могут иметь различные типы электролитов, в которых ионные реакции протекают при разных температурах. Низкотемпературные требуют чистый водород, а значит, больше энергии и специальное оборудование. Высокотемпературные топливные элементы менее затратны, но не везде подходят.

Соревнования разработок

В отличие от беспилотных автомобилей, крупных технологических конкурсов по разработке водородных двигателей не проводится. Потенциальных участников не так много. Среди корпораций — разработчиков водородной технологии можно назвать лишь Toyota, Honda и Hyuindai.

Большинство конкурсов по «водородной альтернативе» проходят среди студентов технических вузов с призовым фондом до 1 тысячи долларов, а испытания проводятся на миниатюрных конструкторских моделях.

Например, ежегодный конкурс Hydrogen Car Challenge (H2 Challenge) среди университетских команд, проводимый компанией TransOptions. В ходе гонки профессиональное жюри оценивает следующие параметры: скорость модели, техническое проектирование, внешний дизайн, качество проектной документации.

Проект автомобиля на водородном топливе компании Opel

Еще пример — ежегодный студенческий конкурс Chem-E-Car Competition, проводимый Американским институтом химических инженеров (American Institute of Chemical Engineers). Участники также работают на миниатюрных моделях, при этом водород должен вырабатываться на месте (либо на автомобиле), а использование баллонов водорода запрещено.

Среди других конкурсов по водородным топливным элементам стоит отметить соревнования, проводимые правительством Великобритании. В данном случае конкурсы имеют целью развитие инфраструктуры и экосистемы на основе водородного топлива.

Первый из таких конкурсов состоялся в 2016 году, в рамках которого участники могли получить софинансирование со стороны Департамента транспорта Великобритании на пополнение своих автопарков автомобилями на водородных топливных элементах. Суммарный объем фонда составил 2 миллиона фунтов стерлингов (160 миллионов рублей), победителями стали 14 организаций, в том числе Europcar (прокат автомобилей), Skanska (строительная компания), служба скорой помощи Йокршира.

Другой конкурс с более весомым бюджетом — 23 миллиона фунтов стерлингов (1,8 миллиарда рублей) — объявило Бюро по автомобилям с низким уровнем выбросов Департамента транспорта Великобритании в 2017 году. Цель подобных соревнований, как объясняют местные власти, — достичь нулевого выхлопа CO2 на транспорте к 2040 году.

Конкурсы для разработчиков водородных технологий вскоре пройдут и в России. В июле стартовал сбор заявок на Up Great в рамках Национальной технологической инициативы. Среди первых трех конкурсов два — на создание водородных двигателей для летательных аппаратов и наземного транспорта. Возможные победители (при условии выполнения задания) станут известны уже в следующем году.

По результатам соревнований могут появиться новые разработки, которые подтолкнут развитие «водородного» рынка и соответствующей инфраструктуры в России. На данный момент ее практически нет.

Игроки рынка топливных элементов

Поскольку расходы на разработку водородных двигателей требуют еще значительных инвестиций, многие автопроизводители пока делают выбор в пользу альтернативных электродвигателей. Однако к 2020 году ожидается выход на рынок более 12 крупных производителей водородных двигателей. В частности, над разработками в этой области работают BMW, Daimler, Honda и Toyota. Демонстрационные авто уже эксплуатируются в Европе, США и Азии.

Хотя разработки водородных двигателей идут уже более десяти лет, основным сдерживающим фактором остается их высокая стоимость (в частности, платины, которая используется в составе). Для доработки и удешевления технологии компании начали создавать консорциумы-партнерства — как, например, Honda, Nissan и VW.

По оценкам Frost & Sullivan, к 2030 году глобальный рынок водородных двигателей составит около 583 тысяч единиц, причем на страны Азиатско-Тихоокеанского региона — Японию и Южная Корею — будет приходиться наибольшая доля продаж (219 тысяч и 80 тысяч соответственно). В других регионах ожидается более медленная динамика:117 тысяч к 2020 году в Европе и 119 тысяч — в Северной Америке.

Предполагается, что лидерами отрасли будут Toyota и Hyundai. На первого придется порядка 30% объема всех продаж к 2030 году, на Hyundai — около 25%.

Автомобиль на водородном топливе компании Toyota

Кстати, японцы уже разработали свою первую серийную модель автомобиля с водородным двигателем — Toyota Mirai. Автопроизводитель заявляет, что она отличится от своих аналогов повышенным запасом хода, который составит 480 километров.

Свой мелкосерийный водородный автомобиль в конце 2015 года представила и компания Honda — седан Honda Clarity Fuel Cell. Мощность двигателя составляет около 100 кВт (135 л.с.), заявленный запас хода — 700 километров, время заправки не превышает трех минут.

Конечно, стоимость этих машин сильно ограничивает их популярность. Например, в 2017 году водородная Honda стоила 3,3 миллиона рублей. Toyota в 2015 году — 66 тысяч евро, или 5,28 миллиона рублей по текущему курсу.

Создание инфраструктуры для заправки водородным топливом будет играть решающую роль в успешной коммерциализации заработок. Сейчас число водородных станций остается довольно низким, и это основной сдерживающий фактор роста рынка автомобилей на водородных двигателях. Сегодня в мире всего порядка 250 водородных заправочных станций, из них 75% — в Северной Америке и Европе. Великобритания поставила цель — создать к 2018 году 65 заправочных станций и более 840 — к 2030-му.

Ожидается, что автопроизводители будут постепенно продвигать водородные транспортные средства для соответствия нормативным требованиям по количеству выбросов вредных веществ, а также исходя из развития инфраструктуры водородных заправочных станций.

Несмотря на то что основной рынок водородного топлива — автомобили, перспективы этих двигателей наблюдаются и в других транспортных индустриях. Они используются и в авиации, железнодорожном транспорте, морской технике.

Например, компания MAN Truck & Bus производит городские низкопольные автобусы на водороде. Они уже эксплуатируются в Европе.

Общественный транспорт на водородном топливе

Компания Boing совместно с европейскими компаниями в 2008 году запустила первый пилотируемый полет самолета с двигателем на топливных элементах. В Германии компания Siemens занимается выпуском подводных лодок на водороде (плюс их в том, что они практически не производят шума).

Испанская судостроительная компания Navantia, S.A. также планировала начать производство водородных подводных лодок для охраны побережья. Однако испытания в 2013 году прошли неудачно: из-за конструкторских ошибок спроектированные лодки оказались значительно тяжелее и испытывали трудности при всплытии.

Зато Исландия планирует перевести на водород весь транспорт, включая общественный, личные автомобили и плавательные средства. Начать решили с рыболовецких судов. Так, в 2008 году сообщалось, что 12 тысяч судов рыболовного флота будут оснащены водородными двигателями.

Перспективы водородных автомобилей в России

Российский рынок транспортных средств на водородных топливных элементах фактически отсутствует. Официальные поставки водородных моделей мировых автопроизводителей — Toyota, Honda, Hyundai — в Россию не планируются, в первую очередь из-за отсутствия заправочных станций, а также конкретных планов развития водородного транспорта в стране.

Вместе с тем существуют определенные перспективы. Водородные автомобили имеют преимущество в потенциальном запасе хода в условиях холодных российских зим на фоне электромобилей, которые значительно сокращают его в холодное время года. Предполагается, что стоимость в обслуживании таких автомобилей может стать ниже классических моделей, что также сыграет существенную роль в потребительских предпочтениях и развитии рынка.

Многое о перспективах развития водородной технологии в России могут сказать результаты конкурсов «Первый элемент» по разработке альтернативных двигателей в рамках технологических конкурсов Up Great.

Водород

Водород – горючий газ без цвета, вкуса и запаха. В обычных условиях в 14,5 раза легче воздуха. При нормальных условиях плотность водорода составляет 0,09 г/л. Среди газов является самым легким и обладает наибольшей теплопроводностью. Растворим во многих металлах (железе, никеле, платине и др.), мало растворим в воде. В жидком состоянии существует в температурном диапазоне от −252,8°C до −259,2 °C.

Водород наиболее распространен во Вселенной, составляя основную часть звезд и межзвездного газа. На Земле содержится в виде соединений (17% по числу атомов, 1% массовой доли в земной коре), лишь незначительное его количество присутствует в атмосфере в виде простого вещества (около 0,00005% по объему).

Водород получают химическими способами, самыми распространенными из которых являются:

  • пропускание водяного пара над раскаленным коксом (t = ~1000ºC):
    H2O + C ↔ H2 + CO;
  • взаимодействие водяного пара с метаном (t = ~1100ºC):
    12СН4 + 5Н2О(пар) + 5О2 → 29Н2 + 9СО + 3СО2;
  • электролиз дистиллированной воды, формальная реакция:
    2H2O → 2H2 + O2;
    поскольку чистая вода почти не проводит электрический ток, в нее добавляют электролиты, например, KOH;
  • электролиз водных растворов хлористых солей:
    2NaCl + 2H2O → H2 + 2NaOH + Cl2.

Согласно ГОСТ Р 51673-2000 водород газообразный чистый (используемый в том числе для термической обработки металлопродукции) изготавливается трех сортов: высшего, первого и второго. Баллон с водородом окрашен в темно-зеленый цвет, с надписью «Водород» красного цвета (ПБ 10-115-96, ГОСТ 949-73).

Водород поставляется в стандартных стальных баллонах вместимостью 40 и 50 л при давлении 14,7 МПа (ГОСТ 949), стальных бесшовных баллонах большого объема (до 1000 л) при давлении 39,2 МПа (ГОСТ 12247), по трубопроводам, а также в специальных крупногабаритных резервуарах для газа – газгольдерах, обычно под давлением не более 10 МПа.

Опасные факторы и меры безопасности при работе с водородом

  • водород в смеси с кислородом и воздухом (гремучий газ) пожаро- и взрывоопасен; для водородно-воздушной смеси концентрационный предел распространения пламени составляет 4,12%–75% по объему, для смеси водорода с кислородом – 4,1%–96% по объему;
  • температура самовоспламенения смеси водорода с воздухом – 510ºC, смеси водорода с кислородом – 450ºC;
  • при дневном свете водородное пламя практически не видимо, поэтому для его обнаружения необходимо применять специальные датчики;
  • сжиженный водород при попадании на кожу вызывает сильное обморожение; при испарении сжиженного водорода возможно образование взрыво- и пожароопасных смесей;
  • при высоком давлении водород способен оказывать наркотическое действие;
  • при высоких концентрациях водород вызывает кислородное голодание и удушье; при работе в его среде необходимо использовать изолирующие противогазы, а помещения оборудовать вентиляцией.

Применение водорода при сварке и резке

Водород получил ограниченное применение:

  • при атомно-водородной сварке (как правило, сталей и алюминия толщиной до 5–10 мм);
  • как горючий газ для газовой сварки (обычно сталей, алюминия толщиной до 5 мм) и резки;
  • в качестве добавки к аргону, азоту при плазменной обработке.

В последние годы интерес к водороду для газопламенной обработки металлов возрастает благодаря появлению мобильных аппаратов, обеспечивающих получение водородно-кислородной смеси в результате гидролиза воды. При разложении воды электрическим током образуются кислород и водород в соотношении β = 1:2, однако такое пламя является окислительным и не обеспечивает качественного процесса сварки сталей. Чтобы пламя было нормальным (β = 0,25–0,4) газовая смесь в барботере электролизного-водного генератора обогащается парами углеводородных соединений – бензина, ацетона, спирта и др. При использовании бензина температура пламени составляет 2600°C. Исходным сырьем для получения водорода и кислорода служит 5–35%-ный раствор KOH в дистиллированной воде.

Водородно-кислородную сварку выполняют преимущественно левым способом. В качестве присадочного материала применяется сварочная проволока Св08ГС, Св08Г2С, Св10ГС, Св10ГСМ. Легирование кремнием и марганцем обеспечивает раскисление металла сварочной ванны, необходимое из-за избытка кислорода.

Перевозка

Баллоны, наполненные водородом, перевозят транспортом всех видов, кроме авиации, в соответствии с правилами перевозки опасных грузов, действующими на транспорте соответствующего вида, и правилами устройства и безопасной эксплуатации сосудов, работающих под давлением. Транспортирование баллонов должно производиться в горизонтальном положении с прокладками между баллонами или в вертикальном положении обязательно с ограждением от возможного падения. Совместная перевозка баллонов с водородом и кислородом категорически не допускается. Правила по приему

Водород технический принимают партиями. Под партией имеется в виду любое количество продукции, однородной по качественным показателям и оформленной единым документом качества, но не более чем сменная выработка; при транспортировке по трубопроводу – весь объем водорода, направленный за 24 часа потребителю.

Каждая партия сопровождается документом, который удостоверяет качество технического водорода .

Данный документ обязан содержать:

– марку продукта, наименование;

– наименование организации или товарный знак;

– дату производства;

– номер партии;

– объем газообразного водорода в кубометрах ;

– получаенные результаты проб или документ о соответствии водорода технического стандартам ГОСТ 3022-80;

-маркировку ГОСТ 3022-80.

Чтобы проверить качество водорода технического, транспортируемого в баллонах, выбирают 2% баллонов, но при этом их не должно быть меньше трех.

Цена указана за 40 литровый баллон = 6 м3.

Для заказа водорода в Новосибирске звоните 89039002825

ДОРОГО!!! Закупаем газовые баллоны Б/У у населения — кислородные, углекислотные, аргоновые, азотные, гелиевые!!!!!