Сверхпроводники при комнатной температуре

Получен сверхпроводник работающий при комнатной температуре

Сверхпроводимость — это одно из самых загадочных, замечательных и перспективных явлений. Сверхпроводящие материалы, не имеющие электрического сопротивления, могут проводить ток практически без потерь, и это явление уже используется в практических целях в некоторых областях, к примеру, в магнитах установок ядерной томографии или ускорителей частиц. Однако, существующие сверхпроводящие материалы для того, чтобы обрести свои свойства, должны быть охлаждены до крайне низких температур. Но эксперименты, проведенные учеными в течение этого и прошлого года, привели к получению некоторых неожиданных результатов, которые могут изменить положение, в котором находятся сейчас технологии использования сверхпроводников.


Международная группа ученых, возглавляемая учеными из института Структуры и динамики материи Макса Планка (Max Planck Institute for the Structure and Dynamics of Matter), работая с одним из самых перспективных материалов — высокотемпературным сверхпроводником окисью меди-бария-иттрия (YBa2Cu3O6+x, YBCO), обнаружила, что воздействие на этот керамический материал импульсов света инфракрасного лазера заставляет некоторые атомы этого материала кратковременно изменить свое положение в кристаллической решетке, увеличивая проявление эффекта сверхпроводимости.

Кристаллы соединения YBCO имеют весьма необычную структуру. Снаружи этих кристаллов присутствует слой окиси меди, покрывающий собой промежуточные слои, в которых содержатся барий, иттрий и кислород. Эффект сверхпроводимости при облучении светом лазера возникает именно в верхних слоях окиси меди, в которых происходит интенсивное формирование пар электронов, так называемых пар Купера. Эти пары могут перемещаться между слоями кристалла за счет эффекта туннелирования, и это указывает на квантовую природу наблюдаемых эффектов. И в обычных условиях кристаллы YBCO становятся сверхпроводниками только при температуре, ниже критической точки этого материала.

В экспериментах, проведенных в 2013 году, ученые обнаружили, что освещение кристалла YBCO импульсами мощного инфракрасного лазера заставляет материал кратковременно становиться сверхпроводником и при комнатной температуре. Очевидно, что лазерный свет оказывает влияние на сцепление между слоями материала, хотя механизм этого влияния остается пока еще не до конца ясным. И для выяснения всех подробностей происходящего ученые обратились к возможностям лазера LCLS, самого мощного на сегодняшний день рентгеновского лазера.

«Мы начали «бить» по материалу импульсами инфракрасного света, который возбудил некоторые из атомов, заставив их колебаться с достаточно сильной амплитудой»
— рассказывает Роман Манковский (Roman Mankowsky), ученый-физик из института Макса Планка, — «Затем мы использовали импульс рентгеновского лазера, следующий сразу за импульсом инфракрасного лазера, для измерения точного значения смещений, произошедших в кристаллической решетке».

Полученные результаты показали, что импульс инфракрасного света не только возбудил и заставил колебаться атомы, его воздействие привело к смещению из положения в кристаллической решетке. Это сделало на очень кроткое время меньшим расстояние между слоями оксида меди и другими слоями кристалла, что в свою очередь привело к увеличению проявления эффекта квантового сцепления между ними. В результате этого кристалл становится сверхпроводником при комнатной температуре, правда это его состояние способно держаться всего несколько пикосекунд времени.

«Полученные нами результаты позволят нам внести некоторые изменения и усовершенствовать существующую теорию высокотемпературных сверхпроводников. Кроме этого, наши данные окажут неоценимую помощь ученым-материаловедам, разрабатывающим новые высокотемпературные сверхпроводящие материалы, имеющие высокое значение критической температуры» — рассказывает Роман Манковский, — «И, в конечном счете, все это, я надеюсь, приведет к осуществлению мечты о сверхпроводящем материале, работающем при комнатной температуре, который совершенно не нуждается в охлаждении. А появление такого материала, в свою очередь, сможет обеспечить массу прорывов в великом множестве других областей, использующих в своих интересах явление сверхпроводимости».

Состояние сверхпроводимости достигнуто при комнатной температуре

Открытие сверхпроводимости в 1911 году породило массу надежд на революцию в энергетике, большинство из которых постепенно рассеялось, поскольку необходимость использования сверхнизких температур — крайне неудобное и невыгодное условие. Конечно, со временем появились так называемые «высокотемпературные» сверхпроводники, но высокотемпературными они являются только по шкале Кельвина, а 77 градусов по ней означает минус 196 градусов по Цельсию. Но совсем недавно учёным удалось осуществить то, что может стать настоящим прорывом. Речь идёт о достижении состояния сверхпроводимости при комнатной температуре.

Как ни странно, в этом ученым помогли современные сверхмощные лазеры, работающие в инфракрасном диапазоне. С помощью излучаемых ими импульсов команде учёных Института Макса Планка (Max Planck Institute for the Structure and Dynamics of Matter) удалось заставить керамический сверхпроводник работать при комнатных температурах. В качестве образца выступил кристалл YBCO (оксида иттрия-бария-меди), многослойная структура которого позволяет электронам входить в связанное состояние, образовывая так называемые куперовские пары. Иными словами, это хорошо известный современной науке квантовый туннельный эффект. Обычно для того, чтобы данный эффект проявился, необходимо достижение критической температуры, но при облучении импульсами мощного лазера он начал проявляться и при комнатных температурах.

Механизм этого явления достаточно прост и заключается в том, что лазерный импульс, по словам учёных, работающих над проектом, не просто заставляет атомы в кристаллической решётке материала вибрировать, но «сдвигает» их со своих позиций. Слои диоксида меди становятся толще (всего на 2 пикометра), а слой между ними утончается на ту же величину, что упрощает образование куперовских пар. К сожалению, всего на несколько пикосекунд, так что о настоящей революции говорить пока рано. Но даже сам факт доказательства возможности по-настоящему высокотемпературной сверхпроводимости тянет на Нобелевскую Премию, ведь рано или поздно будут найдены способы, позволяющие продлить время действия эффекта и нащупать пути к его практическому применению. А перечисление всех, кому может пригодиться такая сверхпроводимость, потребует отдельной внушительной по объёму статьи. Одно можно сказать точно: в их число гарантированно войдут разработчики и производители сложной микроэлектроники.

  • 2

Исследователи из Университета Джорджа Вашингтона сделали важный шаг к достижению одной из самых популярных целей в физике: сверхпроводимости при комнатной температуре.

Сверхпроводимость — это отсутствие электрического сопротивления, которое наблюдается во многих материалах, когда они охлаждаются ниже критической температуры. До сих пор считалось, что сверхпроводящие материалы должны охлаждаться до очень низких температур (минус 180 градусов по Цельсию или минус 292 градусов по Фаренгейту, 93°К), что ограничивало их применение.

Поскольку электрическое сопротивление делает систему неэффективной, устранение этого сопротивления за счет использования сверхпроводников при комнатной температуре позволит более эффективно вырабатывать и использовать электричество, улучшать передачу энергии по всему миру и создавать более мощные вычислительные системы.

«Сверхпроводимость является, пожалуй, одним из последних великих рубежей научных открытий, которые могут выйти за рамки повседневных технологических применений», — сказала Мэддури Сомаязулу, доцент, исследователь в Школе инженерии и прикладных наук GW. «Сверхпроводимость при комнатной температуре была общеизвестным «святым Граалем», ждущим своего появления, и достижение его — хотя и при 2 миллионах атмосфер — является изменяющим парадигму моментом в истории науки».

Ключом к этому открытию стало создание металлического, обогащенного водородом соединения при очень высоком давлении: примерно 2 миллиона атмосфер. Исследователи использовали ячейки с алмазными наковальнями, устройства, используемые для создания высоких давлений, чтобы сжать крошечные образцы лантана и водорода. Затем они нагревали образцы и наблюдали значительные изменения в структуре. Это привело к созданию новой структуры, LaH10, которая, как ранее предсказывали исследователи, станет сверхпроводником при высоких температурах.

Поддерживая образец при высоком давлении, ученые наблюдали воспроизводимые изменения электрических свойств. Они измерили значительные падения удельного сопротивления, когда образец охладился ниже 260°К (минус 13°C или 8°F) при 180-200 гигапаскалях давления, что свидетельствует о сверхпроводимости при достаточно высокой температуре.

В последующих экспериментах исследователи увидели, что переход происходит даже при более высоких температурах, вплоть до 280°К (+7°С). Во время экспериментов исследователи также использовали дифракцию рентгеновских лучей, чтобы наблюдать то же явление. Это было сделано с помощью линии синхротронного излучения усовершенствованного источника фотонов в Аргоннской национальной лаборатории.

«Мы считаем, что это начало новой эры сверхпроводимости», — сказал Рассел Хемли, профессор исследований в Школе инженерии и прикладных наук GW. «Мы исследовали только одну химическую систему — редкоземельный La и водород. В этой системе есть дополнительные структуры, но, что более важно, есть много других богатых водородом материалов, подобных этим, с различным химическим составом. Мы уверены, что многие другие гидриды — или супергидриды — будут обнаружены при еще более высоких температурах перехода под давлением».

Что есть сверхпроводимость?

Само явление было описано нидерландским химиком и физиком Хейке Каммерлингом-Оттесом в 1911 году. Он стал лауреатом Нобелевской премии двумя годами позже.

Впервые понятие сверхпроводимости появилось в научных работах советского академика Льва Ландау, который, кстати, тоже удостоился за свою работу Нобелевской премии в 1962 году.

Сверхпроводимость металлов объясняется при помощи концепции так называемых «пар Купера»: двух объединенных через квант электронов с суммарно нулевым моментом импульса.

Подобные спаривания электронов возникают в кристаллической решетке некоторых металлов при охлаждении до экстремально низких температур.

Однако позднее с помощью купратов — керамик с высоким содержанием меди — ученые добились возникновения сверхпроводимости при температурах, существенно превышающих точку кипения азота (-196 по Цельсию), что, с учетом широкого производства жидкого азота, делает вещества с отсутствующим сопротивлением относительно удобными в применении.

Благодаря этим экспериментам сверхпроводники получили широкое распространение и применяются сегодня, в частности, для формирования изображения в приборах медицинской диагностики, таких как магнитные сканеры и магнитные резонаторы.

Они также широко используются в ускорителях частиц в физических исследованиях.

И тут графен?

Профессор хельсинкского Университета Аалто и Института теоретической физики имени Ландау РАН Григорий Воловик в рамках московской Международной конференции по квантовым технологиям рассказал о возможном получении сверхпроводимости при высоких температурах с помощью графена — плоской модификации углерода с уникальными свойствами.

Графену, как и сверхпроводникам, прочат блестящее будущее — им интересуются производители как лампочек, так и бронежилетов, не говоря уже о его перспективах в микроэлектронике.

Правообладатель иллюстрации IBM Image caption В обычных условиях графен проявляет свойства полупроводника

Его потенциал физики-теоретики описывали в течение всего XX века, однако до практических исследований дело дошло лишь в XXI веке: именно за описание свойств графена, выделенного из графита, выходцы из России Константин Новоселов и Андрей Гейм получили в 2010 году Нобелевскую премию.

По словам Воловика, знания о свойствах электромагнитных полей могут дать возможность построить сверхпроводник на основе плоских энергетических зон, которые можно наблюдать в «идеальном» графене.

И всё же — как быть с комнатной температурой?

Плоская зона, характерная для идеального графена, должна отличаться нулевой энергией во всей своей плоскости.

Однако реальная структура двумерной аллотропной модификации углерода часто напоминает по структуре «расплющенную колбасу», говорит профессор Воловик.

Тем не менее, специалисты не унывают: в данный момент теоретики прорабатывают несколько вариантов появления необходимой для создания сверхпроводимости в комнатных условиях плоской энергозоны, среди которых — сверхохлажденные газы.

В прошлом году американские физики из Стэнфордского университета поняли, как можно воплощать сверхпроводимость графена на практике при помощи наложенных «бутербродом» друг на друга слоев одноатомного углерода — собственно, графена — и кальция.

Поскольку чуть более года назад британские ученые создали графен с помощью кухонного блендера, речь может идти о заметном удешевении производства необходимых материалов.

Задачей, как говорят все упомянутые специалисты, сейчас является изыскание путей производства бездефектного графена в больших объемах.

Твёрдое, жидкое, газ, плазма… что еще?

Одним из состояний вещества, для которого наблюдаются сверхпроводимость и прочие квантовые эффекты, является конденсат Бозе-Эйнштейна, названный так по теоретическим работам индийского физика Сатьендры Бозе и Альберта Эйнштейна.

Правообладатель иллюстрации Science Photo Library Image caption Сатьендра Бозе стоял у истоков изучения поведения частиц при нуле кельвинов

Он является особой формой материи — это агрегатное состояние фотонов и прочих элементарных частиц, относящихся к бозонам, при температурах, близких к нулю кельвинов.

В 1995 году — спустя 70 лет после выхода теоретических обоснований Бозе и Эйнштейна — ученым удалось впервые наблюдать конденсат.

Лишь в 2010 году физикам удалось получить такой конденсат для фотонов.

В частности, выступавшая на конференции преподаватель Сколковского института науки и технологий Наталья Берлофф описывала поведение поляритонов — квазичастиц, которые возникают при взаимодействии фотонов с элементарными возбуждениями среды.

По словам Берлофф, она пыталась представить применение квантовой теории премьер-министру Дмитрию Медведеву и вице-премьеру Аркадию Дворковичу прошлым летом как национальную инициативу.

Некоторые из студентов Сколковского института науки и технологий уже активно принимают участие в международных исследованиях — в частности, ученики Берлофф входят в команду физиков, описывающих поведение упомянутых поляритонов.