RFID считыватель своими руками

RFID –это просто. Реализация собственного RFID транспондера и ридера.

После нескольких лет работы по RFID тематике и разработки разнообразных считывателей для моделей транспондеров популярных стандартов типа Mifare, EMMARINE, TIRIS… меня часто начал озадачивать такой вопрос – буквально в последний год широкую популярность приобрели разного рода эмуляторы под тэги популярных протоколов и разнообразные копировальщики ключей/брелков.

Учитывая большое количеcтво доступных в продаже спец микросхем популярных протоколов RFID и дешевых ридеров, широкого распространения оборудования типа цифровых осцилографов, сниферов и спектроанализаторов, данный вопрос стал для многих разработчиков более актуальным. Тогда я решился сделать для одного из проектов протокол для обмена отличающийся от описанных выше стандартов.

Безусловно данная идея не решает глобальных проблем защищенности новой системы и может быть проанализирована другими разработчиками при наличии оборудования, однако суть в том, что все это не совпадает с существующими стандартами и все железки копировальщиков не позволят по-быстрому скопировать и воссоздать подобный алгоритм. Разумеется подобная система не преподносится тут не как полное решение проблем безопасности, а как опыт адаптации RFID под закрытую систему. Хорошим плюсом в вопросе безопасности среди прочих подобных беспроводных систем является сама технология низкочастотных RFID – она не позволяет считать тэги на большом расстоянии. Пассивные тэги достаточно маломощны и нуждаются для своего питания в достаточно мощном генераторе считывателя, особенности распространения радиоволн на данных частотах также ограничивают пределы работы данной системы. Реальная дальность считывания транспондеров редко превышает 20см для 125 Кгц стандартов типа EmMarine, скажем стандарта EM4001, для других протоколов типа Mifare (13,56Мгц) может быть побольше (1,5 метра для iso15693). Можно добиться большего расстояния считывания для низкочастотных ридеров если увеличить размеры катушки и напряжение питания, соответственно и мощность ридера. Однако такие системы имеют громоздки и как правило их тяжело сделать портативными. Как правило, такие системы реализуются только стационарно – скажем для автомобилей.

Итак, теперь собственно по архитектуре нашей RFID системы. Для экспериментов был выбран контроллер atmel atmega8. Для целей изготовления транспондера это кажется несомненным излишеством. Однако в данном случае решалась первостепенная задача разработки нового интерфейса на готовой отладочной платке c atmega с последующим портированием данного кода на более дешевые контроллеры типа tiny13.

Для транспондера алгоритм работы был построен на основе режима ШИМ генерации при помощи таймера T1 в режиме CTC с прерыванием и сбросом по совпадению с OCR1. Данные для передачи транспондера считываются из EEPROM при включении питания контроллера. Всего транспондер передает 10 байт. Содержимое EEPROM транспондера можно видеть на рисунке 1. Первый байт 0xE7 является обязательным заголовком пакета, так как его наличие проверяется в первую очередь при разборе пакета считывателем. Первые 8 байт являются содержимым пакета транспондера, последние 2 байта содержат контрольную сумму CRC16 первых восьми байт пакета. Для примера в нашем транспондере были записаны такие данные – пакет 0xE7,0x05,0xE8,0x93,0x43,0x7F,0x20,0xFF и соответственно контрольную сумму 0xF5 0xA8. Для изготовления собственного уникального транспондера нужно кроме первого байта 0xE7 записать семь следующих байт в EEPROM, после чего рассчитать контрольную сумму для первых восьми байт. После этого записать в EEPROM два байта CRC16 в конце пакета. Первый байт оставляем без изменений — 0xE7. При включении транспондера данные этих байт разбиваются по битам и кодируются соответствующей длиной импульса в соответствии со значением регистра OCR. Для передачи используются 2 частоты 2Кгц и 5Кгц для передачи логических “0” и “1”. Кроме того данные разделяются импульсами синхронизации – стартовые метки пакетов.

Рис.1 Содержимое пакета транспондера.

Рис.2 Дамп передачи транспондера на экране виртуального осцилографа.

Схему транспондера можно увидеть на рисунке 3. Частота задающего генератора 8Мгц. Питание контроллера +5В. Можно использовать контроллер mega8 с маркировкой “L” тогда питание можно осуществлять от литиевой батарейки 3в (параметры для такого чипа +2,7…. +3,5). Вместо данного транзистора можно использовать любой другой маломощный NPN транзистор. Катушка транспондера была намотана на оправке диаметром 50мм проводом 0,22мм и насчитывает 50 витков. На данный момент транспондер сделан активным — с внешним питанием. На следующем этапе планируется сделать пассивный вариант транспондера, что достаточно просто – сделать развязку для питания от данной катушки, добавить диоды моста выпрямителя и стабилизатор.

Рис.3 Схема транспондера.

Теперь поговорим о схеме считывателя для данного транспондера. Схема была адаптирована на основе раннее использованного считывателя для карт EMMARINE. Часть схемы с генератором на 74hc4060 можно на данном этапе смело удалять, так как пока мы используем активную метку.

Однако эта часть схемы нам понадобится в дальнейшем, когда мы будем делать пассивную метку и нам потребуется получить питание от считывателя. В остальном схема не имеет существенных отличий от схемы считывателя для EMMARINE: пассивный пиковый детектор – фильтр – усилитель – компаратор. Схема имеет максимально возможную простоту и позволяет считывать данные транспондера на расстоянии 10-12см при хорошо настроенных контурах.

Можно еще дальше упрощать схему оставив только детектор и фильтр, поставить один транзистор на выходе который будет играть роль компаратора, но я не стал так делать. На выходе мы получаем двоичный сигнал прямоугольной формы в соответствии с кодированными длительностями импульсов передаваемых транспондером. Допустимые отклонения номиналов элементов при котором схема работоспособна 5-10%. Питание контроллера и операционника +5В. Частота кварца задающего генератора контроллера 12Мгц. Выход компаратора на LM358 подключен к ножке внешнего прерывания контроллера INT0. В программе контроллера настроен вызов прерывания по нарастающему фронту на ножке внешнего прерывания INT0.

В обработчике прерывания происходит проверка синхронизирующих импульсов а затем проверка заголовка пакета и запись содержимого в буфер контроллера. Данные считанных пакетов передаются по интерфейсу RS232 на ПК. Для настройки терминалки указываем следующие параметры: скорость 57.6Kb/s, 8 бит данных, 1стоп бит, без контроля четности. При приеме пакета контроллер рассчитывает контрольную сумму принятых байт и передает данные в терминалку (пакет и CRC). В случае совпадения контрольных сумм расчитанной контроллером и принятой в пакете выводится сигнал на ножку PORTB.0 (14) контроллера (LED1 на схеме). Можно подключить в данную точку пищалку со встроенным генератором или светодиод через сопротивление. При считывании корректного ключа контроллер запрещает внешние прерывания и делает задержку 1с перед следующим считыванием.

Предусмотрен также режим работы данного считывателя в качестве основы RFID замка. Для этого необходимо в EEPROM контроллера считывателя записать полностью байты дампа транспондера — 10 байт. Данные пишутся в EEPROM считывателя точно также, как в EEPROM транспондера. В данном случае при считывании очередного транспондера и совпадении его с записанным в EEPROM считывателя выводится сигнал на ножку PORTB.1 (15) контроллера (LED2 на схеме). В данную точку можно подключить светодиод через сопротивление или выходной ключ (транзистор) на реле исполнительного устройства. Теперь мы получили RFID замок под конкретный ключ и обычный считыватель в одном флаконе.

Рис.4 Схема считывателя RFID меток. (увелчить схему)

Итак, подведем промежуточные итоги. Изготовлен собственный ридер и транспондер под данный считыватель. Мы защитили свое оборудование от посторонних устройств работающих с популярными протоколами RFID. Следующим шагом будет изготовление пассивной метки для нашего считывателя как делают известные производители промышленных транспондеров и портирование кода оборудования на более дешевые модели контроллеров. В архиве к статье прилагаю прошивки для транспондера и считывателя.

Tехнология RFID, метки, ридеры и ее применение

Аббревиатура RFID расшифровывается как Radio Frequency Identification (в переводе с английского: радиочастотная идентификация). RFID (метод радиочастотной идентификации) – технология, которая для автоматической идентификации объектов использует радиоволны. Она может распознавать не только живые существа, но и неодушевленные предметы, к примеру, транспортные средства, контейнеры, одежду и многое другое. Другим примером Auto-ID являются штрих коды или биометрические методы (сканирование сетчатки глаза, использование отпечатков пальцев), а также система оптического распознавания символов и идентификация голоса.

Технология RFID широко применялась еще во времена Великой Отечественной войны. Тогда на самолетах только появились первые системы опознавания, которые позволяли распознавать и отличать свои воздушные войска от войск противника. После окончания войны технология больше не имела коммерческого успеха, но за последние годы все круто изменилось. Ею заинтересовались транспортные и логистические компании, что вывело стандарт на новый уровень.

RFID-метки: классификация

Источник питания

Основная используемая классификация RFID-меток основана на источнике питания – согласно ей, теги делятся на пассивные, активные и полупассивные.

Пассивные RFID-метки не имеют собственного источника питания и используют для работы энергию поля считывателя. В зависимости от архитектуры RFID-метки и типа ридера, пассивные теги работают только на небольшом расстоянии — до 8 метров, но при этом отличаются компактностью и доступной ценой.

Именно пассивные низкочастотные RFID-метки наиболее часто встречаются нам на товарах в магазинах – над повышением компактности тегов и снижением их стоимости работают представители ведущих мировых торговых сетей.

Активные RFID-метки оснащены собственным источником питания, поэтому могут получить дополнительные функции, работают на большем расстоянии и менее требовательны к считывателю. К их недостаткам, по сравнению с пассивными метками, можно отнести большой размер и ограниченное время работы источника питания (правда, на сегодняшний день речь идет о сроке жизни батареи до 10 лет), однако они незаменимы там, где необходим большой радиус работы (до 300 метров).

Активные RFID-метки по праву считаются более надежными, они могут передавать сигнал даже через воду или металл, а также их можно оснастить встроенными сенсорами для оценки температуры, влажности, уровня освещенности и других параметров окружающей среды. Таким образом, RFID-метки могут помочь отслеживать, к примеру, соблюдение условий хранения определенных категорий товаров.

Полупассивные RFID-метки работают по тому же принципу, что и пассивные, но оснащены батареей для питания чипа. Можно сказать, что такое решение является компромиссным в плане стоимости, размера и характеристик RFID-меток.

Исполнение

По исполнению RFID-метки могут представлять собой пластиковые карты, брелоки, корпусные метки, а также самоклеящиеся этикетки из бумаги или термопластика. Существует также формат «невидимой» этикетки, которая фактически вшивается в упаковку товара непосредственно на этапе производства.

Тип памяти

По типу памяти RFID-метки делятся на предназначенные только для идентификации (RO, Read Only), разработанные для считывания блока информации (WORM, Write Once Read Many) и перезаписываемые (RW, Read and Write).

RO RFID-метки используются исключительно для идентификации – данные уникального идентификатора записываются при изготовлении тега, поэтому скопировать их и подделать метку практически невозможно.

WORM RFID-метки позволяют однократно записать какие-либо данные, которые впоследствии можно будет многократно считывать и использовать. Это позволяет пользователю при получении дополнить метку своей информацией, которая затем будет использоваться при считывании.

RW RFID-метки содержат блок памяти, который позволяет многократно записывать и считывать информацию. Идентификатор RFID-метки при этом остается неизменным.

Рабочая частота

Классификация RFID-меток по рабочей частоте выглядит следующим образом:

  • Метки диапазона LF (125—134 кГц)

Характеризуются доступными ценами и определенными физическими характеристиками, которые позволяют использовать такие RFID-метки для чипирования животных. Обычно это – пассивные системы, которые работают только на маленьких расстояниях.

  • Метки диапазона HF (13,56 МГц)

RFID-метки такой частоты используются в основном для идентификации личности, в платежных системах, для решения простых бизнес-задач (например, для идентификации продукции на складе). Большинство RFID-систем, работающих на частоте 13,56 МГц, работает в соответствии со стандартом ISO 14443 (A/B) – именно на этом стандарте работает, к примеру, система оплаты проезда в общественном транспорте Парижа.

К недостаткам RFID-систем описанного диапазона можно отнести отсутствие достойного уровня безопасности, а также возможные проблемы со считыванием на большом расстоянии, в условиях высокой влажности, через металлические проводники.

  • Метки диапазона UHF (860—960 МГц)

Разработанные специально для работы с товарами на складах и в логистических системах, RFID-метки этого диапазона изначально не имели собственного уникального идентификатора. Предполагалось, что в качестве него будет использоваться EPC-номер товара, однако это не позволило бы контролировать подлинность метки, поэтому развитие систем на базе UHF-диапазона позволило усовершенствовать систему.

При этом к особенностям RFID-меток указанного диапазона относится высокая дальность и скорость работы и наличие антиколлизионных механизмов. Сегодня стоимость RFID-меток диапазона UHF является минимальной, однако цена прочего оборудования для работки в обозначенном диапазоне достаточно велика.

К отдельной категории UHF RFID-меток можно отнести теги ближнего поля. Используя магнитное поле антенны, технически они не относятся к радиометкам и могут считываться при высокой влажности и в присутствии металла. Массовое применение меток ближнего поля ожидается, например, в работе с фармацевтическими товарами, нуждающимися в контроле подлинности и строгом учете.

Разновидности RFID меток

Электронные метки бывают активными и пассивными. Активные идентификаторы снабжены собственным источником питания, дальность считывания таких устройств не зависит от энергии ридера. Пассивные метки не имеют своего источника питания, потому питаются от энергии электромагнитного сигнала, который распространяет считыватель. Дальность идентификации данных меток напрямую зависит от энергии, которую излучает ридер.

Каждый из этих видов устройств характеризуется своими преимуществами и недостатками. Пассивные метки хороши своим большим сроком эксплуатации, а также дешевизной в сравнении со своим активным аналогом. К тому же, пассивные идентифицирующие устройства не нуждаются в замене элементов питания. Недостатком устройства является необходимость в использовании более мощных считывателей.

Активные идентифицирующие устройства характеризуются высокой дальностью считывания информации в отличие от пассивных меток, а также возможностью распознавать и считывать данные при движении электронной метки на высокой скорости относительно считывающего устройства. Недостатком активных меток является высокая цена и громоздкость.

Типы RFID-идентификаторов в зависимости от рабочей частоты:

  • (ВЧ) Высокочастотные RFID-метки, работающие на частоте 13,56 МГц;
  • (УВЧ) Ультравысокочастотные RFID-метки, работающие в диапазоне частот 860-960 МГц. Данный диапазон используется в России, в Европе RFID-метки работают в диапазоне 863-868 МГц.

Способы записи информации на идентификатор (метку):

  • ReadOnly-устройства — идентификаторы, на которые можно записать информацию лишь единожды, дальнейшее изменение или удаление информации невозможно;
  • WORM-устройства — RFID-метки, которые позволяют однократно записывать и многократно считывать данные. Изначально в памяти устройства не хранится никакой информации, все необходимые данные вносит пользователь, но после записи перезаписать или удалить информацию невозможно;
  • R/W-устройства – идентификаторы, которые позволяют многократно считывать и записывать информацию. Это наиболее прогрессивная группа устройств, так как подобные метки позволяют перезаписывать и удалять ненужную информацию.

Технология RFID широко используется в производстве, розничной торговле, системах управления и контроля доступом, системах защиты от подделки документов и других областях. Она позволяет экономить время и сводит к минимуму использование ручного труда.

Системы на основе радиочастотных RFID-меток

Сокращение РФИД образовано от английского словосочетания Radio Frequency Identification, что в переводе означает “радиочастотная идентификация”.

В основе системы лежит радиочастотная передача и запись информации. То есть, радиоволновым методом все необходимые данные записываются на чип, там сохраняются и при помощи специального устройства для сбора информации считываются с него.

Простейшая RFID-система состоит из двух элементов — самой метки и радиопередатчика, который ее активирует.

Подпишись на наш канал в Яндекс Дзен — Онлайн-касса!
Получай первым горячие новости и лайфхаки!

Из чего состоит и как работает RFID-метка

Чтобы понять принцип работы RFID-метки, необходимо разобраться в ее устройстве. Каждый идентификатор состоит из нескольких основных элементов:

  • Чип: необходим для хранения информации и связи метки со считывающим оборудованием.
  • Антенна: с ее помощью данные с идентификатора передаются на считывающее устройство.
  • Оболочка: она защищает антенну и чип от воздействия внешней среды.
  • Корпус: он нужен для крепления метки к товарам или другим объектам, перемещение которых необходимо контролировать.

Чтобы распознать информацию, хранящуюся на транспондере, принимающее устройство отправляет на него сигнал. Тег ответит собственным радиочастотным излучением, в котором и будут зашифрованы все необходимые для идентификации сведения. На картинке наглядно представлена схема работы RFID-метки.

Подобная конструкция и принцип действия актуальны для всех видов идентификаторов, вне зависимости от способа питания, назначения и типа используемой памяти.

Виды RFID-меток

Первый критерий, по которому делятся все радиочастотные метки — это тип питания:

  • Пассивные идентификаторы — у них нет встроенного источника питания. Необходимую для работы энергию они получают от считывающего оборудования. Являются наиболее дешевым, а следовательно, самым распространенным вариантом.
  • Активные RFID-метки — оснащены встроенной аккумуляторной батареей, благодаря которой с установленной периодичностью самостоятельно передают идентифицирующую информацию.
  • Пассивные метки с встроенной батареей — передача сигнала с такого идентификатора активируется при запросе, который поступает от радиопередатчика.

Каждый из видов RFID-меток может быть доступен для записи сведений или только для чтения сохраненных данных. Это зависит от типа установленной памяти:

  • RW — позволяет многократно записывать и стирать идентифицирующую информацию.
  • WORM — после покупки на них можно записать необходимую информацию и многократно ее считывать. Стереть сведения с таких тегов нельзя.
  • RO — информация на транспондеры записывается только один раз при изготовлении. Стереть часть данных или добавить дополнительные сведения нельзя. Именно такие метки используются для идентификации товаров.

Также транспондеры классифицируются по частоте, на которой они передают закодированную в них информацию. От этого зависит дальность считывания RFID-метки:

  • сверхчастотные (860—960 МГц) — метки с наибольшей дальностью действия, изначально разрабатывались для удобной организации складского хозяйства;
  • высокочастотные теги (13,56 МГц) — недорогие и экологически безопасные метки, используются в логистике и платежных системах, устанавливаются в карты для оплаты проезда в автобусах, метро и другом общественном транспорте и т.п.;
  • низкочастотные (125—164 кГц) — подобные теги обычно применяются для чипирования животных и людей, не позволяют считывать информацию на большом расстоянии;
    транспондеры ближнего действия (UNF) — в отличие от остальных меток работают в условиях повышенной влажности, а также (за счет магнитного поля антенны) передают сигнал даже при наличии металлических частей в упаковке продукции.

Мощность тега и считывателя обычно идентичны, но в некоторых случаях метка может излучать сигнал на несколько порядков ниже, чем передает считывающее устройство.

  • CipherLab 1861 51 123₽ 51123 https://online-kassa.ru/kupit/cipherlab-1861/ Заказать КупитьЕсть в наличии
  • Motorola FX7500 72 990₽ 72 990₽ 72990 https://online-kassa.ru/kupit/motorola-fx7500/ Заказать КупитьЕсть в наличии
  • Промышленный планшет IDZOR TAB 730 6 100₽ 6 100₽ 6100 https://online-kassa.ru/kupit/promyshlennyj-planshet-idzor-tab-730/ Заказать КупитьЕсть в наличии

Типы систем

Существующие RFID-системы делятся на несколько видов, в зависимости от используемой метки и радиопередатчика:

  • PRAT — здесь используется активный транспондер и пассивный приемник информации, дальность работы системы может достигать 600 м.
  • ARPT — противоположность предыдущему типу: активное устройство для получения данных передает сигнал и принимает ответ от пассивного тега.
  • ARAT — передатчик в такой системе всегда активен, транспондер же может быть как активным, так и пассивным со встроенным аккумулятором.

Для взаимодействия метки и считывателя, сам тег должен попасть в электромагнитное поле, созданное антенной оборудования, принимающего информацию.

Вам будет интересно: Радиочастотная идентификация RFID: автоматизация учета и контроля в бизнесе

Виды считывателей

Устройства, которые принимают и записывают информацию на транспондеры, делятся на два типа:

  1. Мобильные устройства — обычно не имеют постоянной связи с ПК или облачным хранилищем, поэтому всю полученную информацию накапливают в памяти и при подключении к компьютеру копируют ее на жесткий диск. Обладают небольшой дальностью действия. В некоторых случаях также, как и стационарные считыватели, могут не только получать, но и записывать информацию.
  2. Стационарное оборудование — наиболее мощные и быстродействующие модели. Устанавливаются на столешницах, стенах или складских транспортных средствах (погрузчиках и т. п.), могут работать с антеннами различных типов. Подключаются к программируемым контроллерам, персональным компьютерам, интегрируются с установленной на предприятии системой управления.

В зависимости от производственных задач устанавливают считыватели с одной или несколькими антеннами (преимущественно до четырех). Антенный блок может монтироваться в одном корпусе со считывающим устройством или располагаться отдельно. Во втором случае для коммутации устройств используется кабель.

Подберем сканер RFID для вашего бизнеса. Доставка по всей России. Оставьте заявку и получите консультацию в течение 5 минут.

Для чего нужны считыватели

Приемники для сбора информации могут работать как в одном частотном диапазоне, так и в нескольких. Второй вариант стоит несколько дороже, но он имеет ряд преимуществ:

  • для идентификации объектов используется сверхчастотный или высокочастотный сигнал;
  • для записи данных — низкочастотный, который позволяет защитить передаваемые данные от несанкционированного перехвата.

Вне зависимости от используемой частоты, основные задачи радиопередатчиков обычно следующие:

  • Получение и выполнение команд от управляющей системы (ПО компьютера или ноутбука, контроллеры).
  • Нахождение транспондеров в пределах установленного радиуса и предотвращение пересечения сигналов.
  • Получение ответов от тегов и передача пользователю полученных данных.
  • Запись информации на радиочастотные идентификаторы.
  • Выполнение дополнительных команд (к примеру, деактивация метки).

Также оборудование для считывания данных может записывать и получать с тегов дополнительные сведения, такие как показания датчиков или светодиодная визуализация при активации.

Еде одна наша статья: Терминал сбора данных для склада

РФИД-метки: конструкции идентификаторов

Вне зависимости от того, активные или пассивные RFID-метки используются, их внешний вид зависит лишь от области применения:

  • Метки в виде брелоков. Обычно их используют для доступа в производственные помещения или офисные здания, значительно реже — для частной недвижимости.
  • Теги круглой формы. Размер устройства — от 3—5 мм до 8—10 см. Благодаря корпусу из эпоксидной смолы, полистирола или АBС-пластика имеют минимальный диапазон рабочих температур -40 — +90°C.
  • Прямоугольные пластиковые транспондеры. В этих моделях применяется достаточно прочный корпус, который может защитить «начинку» от механических повреждений, в том числе и от падения с высоты.
  • Колбы. Изготавливаются из стекла и пластика. В основном применяются для идентификации людей, домашних и диких животных. Также могут устанавливаться в объекты, изготовленные из металла.
  • Бесконтактные пластиковые карты. Сюда относятся всем известные кредитные и дебетовые карты, а также бесконтактные многоразовые проездные. Корпус тегов в этом случае изготавливается из нескольких слоев ПВХ-пленки.
  • Самоклеящиеся этикетки. Толщина таких транспондеров начинается от 0,1 мм. Корпус изготавливается из плотной бумаги или тонкого пластика. На поверхности такой этикетки может находится штрихкод или другая важная информация. На фото один из вариантов реализации таких RFID-меток.

Также транспондеры изготавливаются в виде браслетов и используются для контроля допуска на закрытые территории.

Где применяются RFID-метки

Невысокая стоимость, простота использования и большая дальность считывания позволили RFID-меткам занять место не только в бытовой жизни, но и во многих сферах бизнеса. Сейчас подобные теги можно встретить буквально везде.

Маркировка одежды и других товаров

Компактные и гибкие метки идеально подходят для идентификации текстильной продукции. Благодаря им можно упростить многие процессы в сфере торговли:

  • товароучет;
  • сбор статистических данных для анализа;
  • проверка остатков на складе и на полках в магазине;
  • идентификация продукции в государственном реестре;
  • борьба с кражами и поставками контрафакта.

Индивидуальную метку оператор сканирует на кассе при реализации товара. Информация о продаже автоматически передается в общую базу магазина и в контролирующие органы, что позволяет избежать большого количества дополнительной работы.

Проезд в общественном транспорте

Бесконтактные карты со встроенными радиометками — это удобное средство для электронной оплаты проезда. Они позволяют улучшить организацию получения платежей, сократить издержки транспортных компаний и повысить эффективность их работы. В настоящее время в России бесконтактные карты широко применяют при оплате проезда в метро.

Логистика

Транспондеры позволяют не только контролировать остатки на складе, но и отслеживать перемещения грузов. Современные RFID-системы удобно использовать при отгрузке и приемке товаров, а также для контроля за перемещением транспортных средств, доставляющих продукцию (в памяти метки можно сохранять данные о маршруте ТС, его техническом состоянии и пр.).

Производство

На больших комбинатах с помощью тегов можно отслеживать движение сырья (полуфабрикатов) или готовой продукции в режиме реального времени. Это позволяет усилить меры безопасности, снизить издержки и усовершенствовать контроль за соблюдением технологических требований.

Библиотечное дело

Теги ускоряют выдачу и возврат книг, а также позволяют обеспечить безопасность. Если промаркировать всю литературу в библиотечном фонде, то без записи в электронном читательском билете о выдаче того или иного экземпляра, его невозможно будет вынести из библиотеки.

Вывод

RFID-технологии позволили автоматизировать большое количество процессов в современном бизнесе: от открытия шлагбаума при въезде авто на территорию предприятия до проверки подлинности огромных партий товара. Это помогло снизить влияние «человеческого фактора», сократить расходы на безопасность и аналитику, увеличить скорость обработки данных и повысить эффективность любого бизнеса.

Но пока такие технологии только начинают входить в нашу жизнь, а значит, компании, которые первыми внедрят их на своих предприятиях, получат существенное конкурентное преимущество.

Планшеты RFID для вашего бизнеса. Доставка по всей России. Оставьте заявку и получите консультацию в течение 5 минут. Оцените, насколько полезна была информация в статье?

Дело не в том, динамический он, или статический
Суть совершенно другая — на LF (125 kHz) идёт ТХ смарт-ключу от авто в зоне доступа (Near), обрабатывая который смарт-ключ выдаёт RX на UHF ( «RF signal» — 315, 433 или 868 Мгц (США, Европа, Япония).
Вероятно, запутавшись в этом, даются комментарии про абсолютную несвязанность LF и RF (UHF) посылок, якобы принадлежащих двум разным системам — охранной и сервисной.
На самом деле путаница состоит в смешении таких функций, как Keyless Go® и дистанционное открытие кнопками смарт-ключа (remote). Открыть авто кнопками брелка (ключа) можно с относительно большого расстояния (десятки и сотни метров), а система Keyless Go работает на небольшом (единицы метров) расстоянии от боковых дверей и задней двери/багажника. Именно она открывает замки (разблокирует двери) при поднесении руки к ручке двери.
И происходит это как раз благодаря работе антенн смарт-системы Keyless Go.
Теперь по сути темы.
Радиоудлинитель («удочка») представляет собой комплект из двух блоков, работающих по следующей схеме:
а.) владелец авто (В.) уходит, скажем, в магазин, оставив автомобиль на стоянке;
б.) злоумышленник 1 (З.1) с одним из блоков удлинителя следует за ним, стараясь держаться на расстоянии нескольких (до 10) метров;
в.) злоумышленник 2 (З.2) с другим блоком удлинителя подходит к машине;
г.) смарт-система улавливает прикосновение или поднесение руки к ручке двери, и посылает LF-сигнал в зоне действия антенн системы;
д.) блок у З.2 улавливает сигнал запроса на 125 kHz и ретранслирует его в блок, находящийся у З.1 (ретрансляция может проходить на любой частоте, удобной по эффективному расстоянию передачи и любым методом, защищающим от потерь данных);
е.) блок у З.1 излучает полученный «сигнал» снова на частоте 125 kHz (но, более мощно, чем антенны смарт-системы авто) рядом с В.;
ё.) смарт-ключ В. принимает сигнал запроса и, обработав его, отсылает ответ (response ID) на UHF (315/433/866 MHz), который тут же улавливается блоком у З.1 и ретранслируется в блок у З.2;
ж.) получив ответ, блок у З.2 тоже на UHF (315/433/866 MHz) передаёт его в авто;
з.) автомобильный смарт-блок производит проверку ответа и даёт «добро» на отпирание дверей и последующий запуск двигателя (при «нахождении» смарта уже внутри авто) и т.д.
Дальнейший процесс уже не относится напрямую к рассматриваемой теме
Как видим, никаких криптографических функций блоки радиоудлинителя не выполняют — их «миссия» сводится лишь к функции ретрансляции, быстрой синхронизации и переизлучения запросов-ответов на изменённой частоте.
Поэтому сам алгоритм обработки или строения кодовых посылок смарт-системы никакого значения для рассматриваемого устройства не имеет.
Это сообщение отредактировал Старичок — Feb 1 2012, 01:05 AM