Охлаждения ПК

Теоретические основы охлаждения элементов системного блока. Охлаждение компонентов

В предыдущей статье, посвященной вопросам охлаждения процессора, мы уже упоминали о том, что любой потребитель электрического тока в той или иной степени нагревается в процессе работы. Определить примерное количество выделяемой теплоты очень легко, достаточно определить суммарную электрическую мощность, потребляемую системным блоком. Потребление современных игровых систем, например, находится в диапазоне 500-1000 Вт. Несложно подсчитать, что компоненты таких компьютеров выделяют до 1 кДж тепловой энергии в секунду. Приближенные вычисления показывают, что при массе системного блока около 10 кг его нагрев на 1 °C происходит менее чем за пять секунд. Получается, что, для того чтобы нагреть весь системный блок до температуры отказа полупроводниковых элементов (85-90 °C), требуется всего пять-семь минут работы ПК. А с учетом неравномерности нагрева отказ системы на практике произойдет менее чем через минуту. Очевидно, что, для того чтобы не допустить перегрева системного блока и его отдельных элементов, необходимо правильно организовать их охлаждение.

Фактически задачу правильного охлаждения в системнике персонального компьютера можно условно разбить на два дополняющих друг друга этапа: охлаждение отдельных компонентов и организация отвода тепла из корпуса системного блока. Рассмотрим эти этапы по отдельности.

Отвод тепла из системного блока

Задача отвода излишков тепла из системного блока ПК не так тривиальна, как может показаться на первый взгляд. Для начала давайте вспомним устройство типового компьютерного корпуса типа tower с верхним расположением блока питания.

В типичном корпусе без дополнительных средств охлаждения вентилятор блока питания, работающий на вытяжку, создает разреженность внутри системного блока. Холодный «забортный» воздух входит через вентиляционные отверстия внизу лицевой панели, проходит, нагреваясь, через область расположения оперативной памяти и процессора и через блок питания выходит наружу.

На схеме хорошо видно, что крупногабаритная видеокарта, платы расширения, а также жесткие диски и устройства на 5,25″ являются серьезными препятствиями для прохождения воздуха и из-за этого создаются устойчивые зоны горячего воздуха, что приводит к повышению температуры расположенных в них компонентов.

Установка дополнительных корпусных вентиляторов напротив центрального процессора и нагнетающего вентилятора на передней панели несколько уменьшит размеры «горячих зон», но полностью их не уберет, так как сам воздушный мешок никуда не денется и крупногабаритные устройства по-прежнему будут препятствовать прохождению воздуха. Воздух, как и текущая вода, всегда ищет кратчайший путь от входа к выходу, а образующиеся при его столкновении с препятствиями турбулентности не решают кардинально проблему охлаждения укромных уголков системного блока.

Тем не менее решить задачу правильного обдува достаточно просто. Шаг первый — установите корпусные вентиляторы так, чтобы в корпусе создавалась разреженная атмосфера. Суммарная мощность работающих на выдув вентиляторов должна быть больше тех, которые обеспечивают приток воздуха внутрь. Знаю, что многие знатоки сразу возразят: «Таким образом мой компьютер превратится в пылесос…» и т. п. Но ответ подобным «знатокам» один — пылесосьте почаще вокруг компьютера, тогда ему нечего будет затянуть в себя. Кроме того, никто не отменял необходимость регулярной чистки компьютерной начинки с помощью обычного пылесоса.

Шаг второй — обеспечьте приток воздуха в системный блок не только через штатные вентиляционные отверстия (в угоду красивому дизайну производители нередко делают их слишком мало), но и возле каждого тепловыделяющего объекта. Делается это достаточно просто. На задней панели снимаются заглушки под видеокартой и платами расширения, а на передней удаляются заглушки слотов для установки флоппи-дисковода и незанятых слотов на 5,25″. Если вас беспокоит дизайн передней панели, то на место снятых можно купить декоративные сетчатые заглушки на свой вкус. Результат подобных манипуляций с корпусом представлен на нижеследующей схеме.

Автор статьи простым снятием заглушки под видеокартой снизил ее температуру на 21°С, чем был сам немало удивлен, так как планировал замену кулера на графическом процессоре, с общим бюджетом всего мероприятия около 20 у. е.

Разумеется, приведенная схема не является догмой. Большое разнообразие компьютерных корпусов, различная организация их штатного охлаждения, разное расположение вентиляционных отверстий и компонентов системного блока явно не могут соответствовать одному шаблону. На данном типовом примере просто показан общий принцип правильной организации воздушных потоков. Обеспечьте прохождение холодного воздуха мимо всех тепловыделяющих элементов, уделив особое внимание видеокарте и винчестерам, и этим вы на порядок увеличите стабильность и надежность системы в целом без дополнительных вложений в дорогие системы охлаждения.

При планировании вентиляции корпуса учтите еще один момент — всегда общее направление воздушных потоков должно помогать естественной воздушной конвекции. Теплый воздух поднимается вверх, поступая в системный блок снизу.

Охлаждение элементов материнской платы

Материнская плата является тем устройством, надлежащему охлаждению которого, как правило, уделяют достаточное внимание только ее производители. Рядовой же пользователь ПК по умолчанию предполагает, что разработчики предусмотрели все необходимые меры по ее тепловой защите. И радиаторы расставил там, где они нужны, и вон, смотрите, даже тепловые трубки проложены там, где надо. А значит, и беспокоиться совершенно не о чем. К сожалению, подобное отношение к охлаждению элементов материнки нередко приводит к преждевременному выходу ее из строя.

Прежде всего давайте разберемся, какие элементы материнской платы выделяют достаточно тепла, чтобы стоило озаботиться их принудительным охлаждением. «Горячих» элементов на материнке всего три:

  • северный мост;
  • южный мост;
  • стабилизаторы напряжения.

Из всех перечисленных наименее проблемным является южный мост. Так как он отвечает за работу с медленными компонентами, то даже увеличение штатных частот при разгоне компьютера мало сказывается на его тепловыделении. Если все же тестовые утилиты показывают слишком высокую температуру, в большинстве случаев достаточно установки на южный мост небольшого радиатора. Так как крепежных отверстий в платах возле южного моста не бывает, радиатор устанавливается на термоклей.

Северный мост, в отличие от южного, является более мощным источником тепла. Практически все производители материнских плат устанавливают на него штатные радиаторы. В случае недостаточной скорости рассеивания тепла на этот радиатор следует закрепить малогабаритный кулер. Как правило, для его установки в материнках предусмотрены монтажные отверстия вокруг чипа моста. Если же этих отверстий нет, то установка вентилятора на радиатор производится с помощью обычного суперклея.

Охлаждаем все, что можно

Стабилизаторы напряжения подвержены перегреву не меньше северного моста. Располагается группа стабилизаторов, как правило, между процессором и блоком разъемов. В современных материнских платах на них нередко устанавливаются штатные радиаторы. В топовых материнках даже организуется единая система охлаждения для мостов и стабилизаторов на тепловых трубках. Однако для нормального охлаждения стабилизаторов хороший обдув гораздо важнее солидных радиаторов. Это необходимо учитывать при выборе кулера для центрального процессора. Если у вас установлен супермощный кулер с направлением воздушного потока параллельно материнской плате или же имеется система жидкостного охлаждения, вообще не создающая воздушных потоков, то стабилизаторы могут запросто перегреться даже при наличии хороших радиаторов на них.

Такой кулер отлично охлаждает только процессор

При использовании подобных систем охлаждения центрального процессора необходимо в обязательном порядке предпринимать дополнительные меры по охлаждению зоны расположения стабилизаторов напряжения. Если же ваш процессорный кулер направляет воздушный поток на материнскую плату, то в большинстве случаев этого будет достаточно для охлаждения стабилизаторов с радиаторами до нормальной температуры.

В том случае, если, на ваш взгляд, система охлаждения продумана правильно, все радиаторы и вентиляторы на месте, обдув нормальный, но мост или стабилизаторы все же перегреваются, поменяйте термопасту. Нередко причиной перегрева является плохой термоинтерфейс между тепловыделящими компонентами ПК и системами их охлаждения.

Охлаждение оперативной памяти

К вопросам охлаждения модулей оперативной памяти серьезные оверклокеры подходят с не меньшей ответственностью, чем к охлаждению процессора. Если для работы в штатных режимах в большинстве случаев достаточно правильной организации воздушных потоков в корпусе системного блока и установки простейших радиаторов для полного успокоения, то при разгоне качественное охлаждение — залог успеха.

Радиатор на планке оперативной памяти

Для более надежного охлаждения оперативки производители предлагают широкий спектр устройств различного типа. Самые недорогие — системы воздушного охлаждения, которые представляют собой комплект радиаторов, надеваемых на каждую планку памяти, и перекрывающий весь ряд планок блок вентиляторов. Такие системы имеют существенный недостаток — довольно большие габариты, из-за которых нередко невозможно или нежелательно их устанавливать рядом с крупным процессорным кулером.

Кулер отлично охлаждает память, но съедает половину воздуха у процессора

Лишены этого недостатка жидкостные системы охлаждения оперативной памяти. В таких системах к специальным радиаторам крепится контактная площадка, через которую прокачивается охлаждающая жидкость. Подобные жидкостные системы показывают максимальную эффективность, тем более что существуют системы, использующие в качестве теплоносителя жидкий азот.

Напомним, что столь радикальные меры по охлаждению оперативной памяти необходимы только при разгоне системы. Если же вы не собираетесь повышать штатные частоты, то вполне достаточно радиаторов на планках памяти и правильной организации воздушных потоков в корпусе ПК.

Охлаждение видеокарт

Современные видеокарты в подавляющем большинстве случаев являются устройствами, хорошо сбалансированными в отношении охлаждения их элементов. Штатные радиаторы и вентиляторы, устанавливаемые на модули графической памяти и на графический процессор, обеспечивают достаточное охлаждение этих элементов в штатных режимах. Тем не менее широкие ряды компьютерных энтузиастов предпринимают серьезные усилия по снижению температуры элементов видеокарт при их разгоне, так как в этом случае производительности штатных кулеров уже недостаточно. Ну и, конечно же, дополнительные меры по снижению рабочей температуры компонентов графических карт необходимо предпринимать, если замечена нестабильность их работы при серьезных нагрузках или тестовые программы показывают близкие к критическим данные с датчиков температуры.

Гибридная система охлаждения видеокарты

Основные шаги по повышению эффективности охлаждения видеокарт мало отличаются от описанных выше для других компонентов. В первую очередь необходимо проанализировать воздушные потоки в системном блоке и обеспечить стабильный приток холодного воздуха в область радиатора системы охлаждения видеокарты. Если с обдувом все в порядке, но температура чипа не снижается, то стоит задуматься о замене штатной системы охлаждения на более производительную. Ассортимент кулеров для видеокарт немногим уступает ассортименту процессорных — мощные радиаторы с двумя-тремя высокопроизводительными вентиляторами, системы жидкостного охлаждения, гибридные кулеры, сочетающие достоинства воздушного и жидкостного охлаждения в самых разнообразных вариантах. И, конечно же, для самых радикальных оверклокеров есть системы охлаждения, использующие в качестве теплоносителя (скорее хладоносителя) жидкий азот.

Охлаждение жестких дисков, оптических приводов и других устройств

Жесткие диски и прочие «медленные» устройства являются менее подверженными перегреву устройствами. Однако, если учесть, что зачастую они устанавливаются в места с недостаточной вентиляцией, случаи выхода из строя электроники жестких дисков из-за перегрева не так уж и редки. Поэтому необходимо все же правильно организовывать обдув контроллеров даже таких «медленных» устройств как с помощью правильной организации воздушных потоков внутри системного блока, так и с помощью специальных винчестерных кулеров, принудительно обдувающих непосредственно платы электроники. Такие кулера могут крепиться непосредственно на устройство, а могут представлять собой своеобразный карман формата 5,25″ с системой принудительной вентиляции, внутрь которого уже устанавливаются жесткие диски на 3,5″.

Вывод

Организация эффективного охлаждения элементов системного блока является одним из важных элементов обеспечения стабильности и долговечности работы всего ПК в целом. Одним из важнейших этапов этой работы является обеспечение эффективного отвода излишков тепла из корпуса. В подавляющем большинстве случаев этот этап окажется и единственным необходимым для тех, кого устраивает производительность работы своего компьютера в штатном режиме.

Для широкого же круга экстремалов, стремящихся выжать максимум возможного из имеющегося в их руках компьютерного «железа», существует большой спектр разнообразных высокопроизводительных систем охлаждения любого из элементов системного блока, короткий обзор которых мы постарались дать в этой статье.

Главная составляющая любого ПК – это система охлаждения. Она представляется в виде набора специальных устройств для устранения тепла в деталях, с быстро нагревающимися свойствами, из-за насыщенного функционирования «железа». Полученное тепло утилизируется прибором в атмосферу, устраняется вместе с теплоносителем или из-за фазовой трансформации теплоносителя.

Принцип работы прибора для компьютера и для ноутбука не отличается. Передача тепла проивходит за счет рабочей жидкости, проходящей по всем частям. Довольно часто производители используют дистиллированную очищенную воду, иногда с добавками и компонентами. Значительно реже применяется жидкий металл, масло или антифриз. В набор входят помпы, теплосъемник, радиатор для распыления жидкости и специальный резервуар для нее, шланги, трубы и датчики.

Важное условие нормальной работы устройств для процессора intel – теплопроводность жидкости, что возможно было минимизировать изменение температурного режима между частью трубки и поверхностью испарения. Еще она должна характеризоваться высоким значением удельной теплоемкости для уменьшения скорости циркуляции жидкости, что и приходит к эффективному остужению.

Разновидности систем охлаждения

Такое оборудование обязательная составляющая любого ПК, особенно для игровой видеокарты и профессиональных компов для программистов. Все зависит от мощности самого ПК и иных характеристик, поэтому могут устанавливаться разные виды устройств. Все товары можно разделить на такие типы:

  • Воздушное охлаждение (кулер). Самый распространённый вид. Все тепло с горячих деталей перемещается к радиатору и потом распыляется в окружающую среду. Эффективность его действия зависит от полезной площади радиатора, материала изготовления, скорости подачи потока воздуха.
  • Пассивное (радиатор). Применяется к тем деталям компа, где нагрева происходит не слишком быстро. Есть модели оборудованные прибором бесшумного остужения, характеризующиеся эффективным отводом тепла при низкой скорости потока воздуха.
  • Жидкостное. Используются чаще на серверных компьютерах, чем на домашних ПК. Его преимущества в быстром охлаждении. В устройстве имеется специальная рабочая жидкость под названием хладагент, отводящая тепло от нагревающихся элементов к радиатору. После чего происходит рассеивание полученного тепла по окружающему пространству.
  • Термоинтерфейсы. Часть теплопроводящего прибора, устанавливаемая между охлаждаемой поверхностью и устройством отвода тепла. Используются особенные пасты и компаунды.
  • Кронштейны для ПК оборудования. Это насадка, имеющая вид пропеллера. За счет нее прикрывается вся охлаждающая система. При включении компьютера техника начинает работать и крутить, что также оказывает дополнительное охлаждение всех деталях «железа».

Помимо пассивных кулеров на технику также устанавливаются активные модели. Они функционируют благодаря конвекции. Он имеет форму радиатора со специальным вентилятором. Они отвечают за охлаждение раскаленных процессоров, поддающиеся нагреву больше всего, несмотря на небольшие размеры приборы. Из-за того что система работает вместе с вентилятором периодически появляются неприятные шумы, мешающие обыденной деятельности.

Как выбрать систем охлаждения для ПК

Для того чтобы приборы работали без сбоев и давала результаты нужно разбираться в том, на какие элементы она должна давать основное воздействие. Для всего корпуса вентиляция осуществляется за счет специальных отверстий. Воздух проходить через них, попадает во внутрь «железа», проходить по всем элементам и выходит через блок питания. Для постоянно работающего ПК такого охлаждения будет мало, поэтому производители устанавливают дополнительные приборы.

Чтобы вопрос как выбрать составляющее для компьютера или ноутбука не было проблемой специалисты советуют сначала хорошо узнать технику. Это нужно для того чтобы понимать какие приборы и нагрузку может выдержать материнская плата.

После проведения анализа всех характеристик можно приступать к выбору вентилятора. Его рекомендуется брать с большими лопастями. На каждом из них будут специальные значки, указывающие на уровень шума, который он издает при работе. Так можно сразу предотвратить слишком шумное охлаждение выбрать подходящий прибор. Отзывы в интернете гласят, что установка всей системы простое дело, но лучше доверить ценный ПК профессионалу, да и выбор приборов тоже. После усовершенствования техники специалистами по «железу» она будет работать быстрее и эффективное.

Ни для кого не секрет, что при работе компьютера все его электронные компоненты нагреваются. Некоторые элементы греются весьма ощутимо. Процессор, видеокарта, северные и южные мосты материнской платы – самые греющиеся элементы системного блока. Даже при обычном простое компьютера без дела, их температура может достигать 50-60 градусов Цельсия. Но если системный блок периодически не очищается от пыли, то нагрев основных компонентов компьютера становиться еще больше. Повышенный нагрев приводит к постоянным зависаниям компьютера, вентиляторы работают на повышенных оборотах, что приводит к раздражающему шуму. Перегрев вообще опасен и приводит к аварийному отключению компьютера.
Поэтому основной проблемой всей электронной части вычислительной техники – это правильное охлаждение и эффективный отвод тепла. У подавляющего большинства компьютеров, как промышленных, так и домашних, для отвода тепла применяется воздушное охлаждение. Свою популярность она получила за счет свой простоты и дешевизны. Принцип такого типа охлаждения заключается в следующем. Все тепло от нагретых элементов отдается окружающему воздуху, а горячий воздух в свою очередь с помощью вентиляторов выводиться из корпуса системного блока. Для повышения теплоотдачи и эффективности охлаждения, наиболее нагревающиеся компоненты снабжаются медными или алюминиевыми радиаторами с установленными на них вентиляторами.
Но тот факт, что отвод тепла происходит за счет движения воздуха, совершенно не означает что, чем больше установлено вентиляторов, тем лучше будет охлаждение в целом. Несколько неправильно установленных вентиляторов могут навредить гораздо больше, а не решить проблему перегрева, когда один грамотно установленный вентилятор решит эту проблему очень эффективно.

Выбор дополнительных вентиляторов.

Прежде чем покупать и устанавливать дополнительные вентиляторы внимательно изучите свой компьютер. Откройте крышку корпуса, посчитайте и узнайте размеры установочных мест для дополнительных корпусных кулеров. Посмотрите внимательно на материнскую плату – какие разъемы для подключения дополнительных вентиляторов на ней имеются.
Вентиляторы нужно выбирать самого большого размера, который вам подойдет. У стандартных корпусов это размер 80×80мм. Но довольно часто (особенно в последнее время) в корпуса можно установить вентиляторы размером 92×92 и 120×120 мм. При одинаковых электрических характеристиках большой вентилятор будет работать гораздо тише.
Старайтесь покупать вентиляторы с большим количеством лопастей – они также тише. Обращайте внимание на наклейки – на них указан уровень шума. Если материнская плата имеет 4-х контактные разъемы для питания кулеров, то покупайте именно четырехпроводные вентиляторы. Они очень тихие, и диапазон автоматической регулировки оборотов у них довольно широкий.
Между вентиляторами получающие питание от блока питания через разъем Molex и работающие от материнской платы однозначно выбирайте второй вариант.
В продаже имеются вентиляторы на настоящих шарикоподшипниках – это наилучший вариант в плане долговечности.

Установка дополнительных вентиляторов.

Давайте рассмотрим основные моменты правильной установки корпусных вентиляторов для большинства системных блоков. Здесь мы приведем советы именно для стандартных корпусов, так как у нестандартных расположение вентиляторов столь разнообразно, что описывать их не имеет смысла – все индивидуально. Более того у нестандартных корпусов размеры вентиляторов могут достигать и 30 см в диаметре. Но все же некоторые моменты охлаждения нестандартных корпусов ПК рассмотрены в следующей статье Правильное охлаждение для нестандартных корпусов ПК.
В корпусе нет дополнительных вентиляторов.
Это стандартная компоновка для практически всех компьютеров продаваемых в магазинах. Весь горячий воздух поднимается в верхнюю часть компьютера и за счет вентилятора в блоке питания выходит наружу.

Большим недостатком такого вида охлаждения является то, что весь нагретый воздух проходит через блок питания, нагревая при этом его еще сильнее. И поэтому именно блок питания у таких компьютеров ломается чаще всего. Также весь холодный воздух всасывается не управляемо, а со всех щелей корпуса, что только уменьшает эффективность теплообмена. Еще одним недостатком является разреженность воздуха, получаемая при таком типе охлаждения, что ведет к скапливанию пыли внутри корпуса. Но все же, это в любом случае лучше, чем неправильная установка дополнительных вентиляторов.
Один вентилятор на задней стенке корпуса.
Такой способ применяется больше от безвыходности, так как в корпусе имеется лишь одно место для установки дополнительного кулера – на задней стенке под блоком питания. Для того чтобы уменьшить количество горячего воздуха проходящего через блок питания устанавливают один вентилятор работающий на «выдув» из корпуса.

Большая часть нагретого воздуха от материнской платы, процессора, видеокарты, жестких дисков выходит через дополнительный вентилятор. А блок питания при этом греется значительно меньше. Также общий поток движущегося воздуха увеличивается. Но разреженность повышается, поэтому пыль скапливаться будет еще сильнее.
Дополнительный фронтальный вентилятор в корпусе.
Когда в корпусе имеется лишь одно посадочное место на лицевой части корпуса, либо нет возможности включения сразу двух вентиляторов (некуда подключать), то это самый идеальный вариант для вас. Необходимо поставить на «вдув» один вентилятор на фронтальной части корпуса.

Вентилятор нужно установить напротив жестких дисков. А правильнее будет написать, что винчестеры нужно поставить напротив вентилятора. Так холодный входящий воздух будет сразу их обдувать. Такая установка гораздо эффективнее, чем предыдущая. Создается направленный поток воздуха. Уменьшается разрежение внутри компьютера – пыль не задерживается. При питании дополнительных кулеров от материнской платы, снижается общий шум, так как снижаются обороты вентиляторов.
Установка двух вентиляторов в корпус.
Самый эффективный метод установки вентиляторов для дополнительного охлаждения системного блока. На фронтальной стенке корпуса устанавливается вентилятор на «вдув», а на задней стенке – на «выдув»:

Создается мощный постоянный воздушный и направленный поток. Блок питания работает без перегревов, так как нагретый воздух выводиться вентилятором, установленным под ним. Если установлен блок питания с регулируемыми оборотами вращения вентилятора, то общий шум заметно снизиться, и что более важно давление внутри корпуса выровнится. Пыль не будет оседать.

Неправильная установка вентиляторов.

Ниже приведем примеры неприемлемой установки дополнительных кулеров в корпус ПК.
Один задний вентилятор установлен на «вдув».
Создается замкнутое воздушное кольцо между блоком питания и дополнительным вентилятором. Часть горячего воздуха из блока питания тут же всасывается обратно внутрь. При этом в нижней части системного блока движения воздуха нет, а следовательно охлаждение неэффективное.

Один фронтальный вентилятор установлен на «выдув».
Если вы поставите только один передний кулер, и он будет работать на выдув, то в итоге вы получаете очень разряженное давление внутри корпуса, и малоэффективное охлаждение компьютера. Причем из-за пониженного давления сами вентиляторы будут перегружены, так как им придется преодолевать обратное давление воздуха. Компоненты компьютера будут нагреваться, что приводит к повышенному шуму работы, так как скорости вращения вентиляторов увеличатся.

Задний вентилятор на «вдув», а фронтальный — на «выдув».
Создается воздушное короткое замыкание между блоком питания и задним вентилятором. Воздух в районе центрального процессора работает по кругу.

Передний же вентилятор пытается против естественного конвекционного подъема «опустить» горячий воздух, работая под повышенной нагрузкой и создавая разрежение в корпусе.
Два дополнительных кулера стоят на «вдув».

Создается воздушное короткое замыкание в верхней части корпуса.

При этом эффект от входящего холодного воздуха ощущается только для винчестеров, так как дальше он попадает на встречный поток от заднего вентилятора. Создается избыточное давление внутри корпуса, что усложняет работу дополнительных вентиляторов.
Два дополнительных кулера работают на «выдув».
Самый тяжелый режим работы системы охлаждения.

Внутри корпуса пониженное давление воздуха, все корпусные вентиляторы и внутри блока питания работают под обратным давлением всасывания. Внутри воздуха нет достаточного движения воздуха, а, следовательно, все компоненты работают перегреваясь.
Вот в принципе и все основные моменты, которые вам помогут в организации правильной системы вентиляции своего персонального компьютера. Если на боковой крышке корпуса есть специальная пластиковая гофра – используйте её для подачи холодного воздуха к центральному процессору. Все остальные вопросы установки решаются в зависимости от структуры корпуса. Мы будем рады, если вы напишите свои соображения по этому поводу в комментариях к статье.

Начислено вознаграждениеЭтот материал написан посетителем сайта, и за него начислено вознаграждение.

Вступление

Как эффективно охладить комплектующие внутри системного блока? Казалось бы, простой вопрос, над ответом на который не будет задумываться ни один опытный пользователь ПК, а уж тем более оверклокер или компьютерный энтузиаст. Мол что тут думать: холодный воздух идет по низу, а горячий воздух устремляется вверх — простая физика из школьного курса, следовательно, надо организовать вдув (забор холодного воздуха) снизу, а выдув горячего воздуха сверху, холодный воздух должен пройти через все комплектующие, попутно охлаждая у их и становясь теплым, и «выброситься» из корпуса по классике через вентилятор, расположенный на задней стенке. Но это теория. Теория, которая не учитывает воздушные потоки, создаваемые вентиляторами и количество этих самых вентиляторов.

реклама

Я же предлагаю рассмотреть более конкретную и приближенную к реальности ситуацию: как эффективно охладить комплектующие внутри системного блока, имея всего два вентилятора? Давайте рассмотрим как классические схемы охлаждения, так и нетипичные способы расположить вентиляторы в корпусе.

анонсы и реклама

Предлагаю перейти к тестовому стенду.

Тестовый стенд

В статье такого формата было решено немного изменить структуру описания тестового стенда.

Итак, в качестве «подопытного» корпуса был выбран Thermaltake View 31 TG, довольно часто появляющийся в наших экспериментах. Выбор данной модели в качестве «испытуемой» был обусловлен тем, что View 31 TG позволяет практически как угодно расположить вентиляторы внутри себя, а благодаря съемной передней панели данный корпус позволяет имитировать модели с плохой и хорошей продуваемостью.

За охлаждение комплектующих внутри корпуса отвечали два комплектных вентилятора Riing 14 LED Blue. Участие этих вентиляторов в эксперименте обусловлено тем, что они создают достаточно мощный воздушный поток, относительно шума, исходящего от них. И, собственно, мощный воздушный поток «раскроет» схему расположения вентиляторов, так как слабые вентиляторы смогли бы обеспечить достаточную мощность вдува или выдува и эксперимент можно было бы считать не достаточно честным и объективным.

Прогревали корпус изнутри процессор AMD Ryzen 7 2700, разогнанный до частоты в 3.9 ГГц по всем ядрам, тепловыделение которого составило порядка 140 ватт, и видеокарта NVIDIA GeForce GTX 1060 c TDP около 120 ватт. За охлаждение процессора отвечала двухбашенная система охлаждение GELID Phantom, обзор и тестирование которой были проделаны в прошлой статье. Рекомендую к ознакомлению.

Тестирование проходило при комнатной температуре в 22 градуса. Температура поддерживалась сплит-системой. Прогрев комплектующих осуществлялся программой OCCT. В качестве теста был выбран стресс-тест как видеокарты, так и процессора одновременно, AVX инструкции при этом были задействованы. Каждый тестовый прогон длился чуть больше 15 минут, чтобы обеспечить практически максимально возможный нагрев комплектующих в созданных условиях.

Тест «пристрелочный»: тестирование без использования вентиляторов

Для начала было решено провести «пристрелочное» тестирование, которое заключалось в том, что комплектующие внутри закрытого корпуса будут нагреваться при естественной циркуляции воздушных потоков. Смысл же этого тестирования заключался в том, чтобы выявить «эталонную» температуру, с которой мы в последующем будем сравнивать, чтобы определить, какая схема расположения вентиляторов покажет себя максимально эффективно.

В процессе тестирования горячие воздушные потоки будут выходить естественным путем через перфорационные отверстия на верхней крышке корпуса, а также «выбрасываться» через перфорацию в задней стенке при помощи башенного кулера GELID Phantom.

Были получены следующие результаты, с которыми вы можете ознакомиться во вложении.

Нагрев и скорость вращения (без вентиляторов)

Тест первый, схема первая: оба вентилятора на выдув, плохой забор воздуха спереди / хороший забор воздуха с передней стенки

Прошу обратить внимание на расположение вентилятора сверху. Именно такое расположение вентилятора в верхней части корпуса является максимально эффективным решением, так как располагать вентилятор сверху в передней части корпуса не имеет никакого смысла, так как данное решение максимально нецелесообразно — зачем выбрасывыть наружу еще холодный воздух? Также сразу хочется отметить, что в данной статье не будет схем со «вдувом сверху», так как мы намерены проверить реальные варианты схем, а не рассматривать всевозможные глупости неопытных пользователей.

Итак, при плохом заборе воздуха (закрытой передней стенке) нам удается выиграть практически 10 градусов по температуре процессора относительно корпуса без вентиляторов. Видеокарта становится холоднее на 4 градуса. А скорость вращения вентиляторов на башне сократилась на 100 оборотов. Компьютер стал заметно тише и холоднее.

Прошу ознакомиться с полученными результатами

Нагрев и скорость вращения: два вентилятора на выдув (плохой забор воздуха)

При хорошем заборе воздуха (открытой передней панели) удается выиграть дополнительный градус по температуре процессора. Скорость вращения процессорных вентиляторов несколько сокращается. Компьютер становится более шумным из-за худшей звукоизоляции.

Прошу ознакомиться с более подробными результатами во вложении.

Нагрев и скорость вращения: два вентилятора на выдув (хороший забор воздуха)

Тест дополнительный, схема упрощенная: один вентилятор на выдув (закрытая передняя панель)

Далее предлагаю выяснить, насколько необходимо иметь два вентилятора на выдув горячего воздуха. Для этого, разумеется, я убираю вентилятор, находящийся над процессорным кулером.

Данное действие привело к чуть заметному ухудшению результатов относительно схемы с двумя вентиляторами на выдув. Температура процессора поднялась на 1 градус, видеокарта же также прогрелась на 1 градус больше. Скорость вращения вентиляторов возросла.

Прошу ознакомиться с более подробными результатами во вложении.

Нагрев и скорость вращения: один вентилятор на выдув (плохой забор воздуха)

Тест второй, схема вторая: два вентилятора на вдув, закрытая и открытая передняя панель

Теперь посмотрим, на сколько эффективными себя покажут оба вентилятора, расположенные спереди корпуса. Выдув горячего воздуха будет осуществляться силами вентиляторов башенного кулера, а также естественным путем через перфорацию в верхней части корпуса.

С закрытой передней панелью данная схема расположения вентиляторов оказалась абсолютно неэффективной. Температура процессора поднялась на два градуса относительно схемы без использования корпусных вентиляторов. Но видеокарту удалось охладить на пару градусов.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: два вентилятора на вдув (закрытая передняя панель)

Открытая передняя панель дает настоящий «глоток свежего воздуха» комплектующим. Относительно корпуса, лишенного вентиляторов, температура процессора снизилась на 9 градусов. Данная схема расположения показала себя существенно лучше, та же компоновка вентиляторов с закрытой панелью, но проигрывает двум вентиляторам на выдув, работающими даже с закрытой передней панелью. Превосходство над одним вентилятором на выдув на 0,3 градуса — погрешность.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: два вентилятора на вдув (открытая передняя панель)

Тест третий, вариации «классических» схем: один вентилятор на вдув, один на выдув (разное расположение вентилятора на вдув спереди корпуса), открытая и закрытая передняя панель.

Теперь мы переходим к «классическим» схемам, объединенным в единый тест, так как все они предусматривают расположение одного вентилятора на вдув и одного на выдув.

Начнем с наиболее классического варианта, когда мы имеем вентилятор на вдув, расположенный внизу передней части корпуса и обдувающий жесткие диски, вентилятор на выдув располагается на задней стенке корпуса. Передняя панель корпуса закрыта.

Такое «классическое» расположение вентиляторов проигрывает по своей эффективности вариантам с двумя вентиляторами на выдув с точки зрения температуры процессора. Однако стоит заметить, что при таком расположении вентиляторов жесткие диски внутри системного блока охлаждаются куда лучше, чем в том варианте, когда в корпусе нет вентиляторов на вдув вовсе.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: «классическое» расположение вентиляторов (вентилятор на вдув снизу, передняя панель закрыта)

А теперь все то же самое, но с открытой передней панелью.

Температура ЦП снизилась до уровня двух вентиляторов на выдув с закрытой передней панелью. Температура жестких дисков опустилась до минимального значения.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: «классическое» расположение вентиляторов (вентилятор на вдув снизу, передняя панель открыта)

Переставляем вентилятор на вдув выше корзины с жесткими дисками и закрываем переднюю панель корпуса.

Определенно, данная схема расположения не имеет абсолютно никакого смысла, так как температура процессора стала даже выше, чем с одним вентилятором на выдув. Но стоит заметить, что при таком расположении.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: «классическое» расположение вентиляторов (вентилятор на вдув сверху, передняя панель закрыта)

Сохраняем расположение вентиляторов и отрываем переднюю панель корпуса.

Температура процессора оказалась средней между двумя вентиляторами на выдув с закрытой крышкой и с открытой крышкой. Температура видеокарты осталась примерно на том же уровне. Эффективность охлаждения корзины с жесткими дисками определенно снизилась.

С более подробными результатами прошу ознакомиться в материалах, представленных во вложении.

Нагрев и скорость вращения: «классическое» расположение вентиляторов (вентилятор на вдув сверху, передняя панель открыта.

В заключении напрашиваются как очевидные для многих, так и несколько не очевидные выводы: первое, передняя панель с боковой перфорацией ухудшает охлаждение комплектующих, выбирайте корпуса с прямым забором воздуха с передней части корпуса; второе, наиболее сбалансированной показала себя «классическая» схема с вентилятором, расположенным в нижней части передней панели, что помогает обдувать жесткие диски, однако, если в вашем ПК уже нет жестких дисков, то вам стоит задуматься о расположении двух вентиляторов на выдув; третье, выдув намного важнее, чем вдув — не зря даже в самые слабые и дешевые компьютеры ставят один вентилятор на выдув горячего воздуха из корпуса, хотя бы один вентилятор на выдув должен быть в вашем компьютере обязательно.

Дополнение

В тестировании не приняла участие схема продува, когда в корпусе имеется один вентилятор на вдув, забирающий воздух через перфорацию через нижнюю стенку корпуса, и один вентилятор на выдув, расположенный на верхней стенке корпуса над процессорным кулером. Определенно, такая схема имеет место быть, но требует горизонтального расположения башни, чтобы башенные вентиляторы забирали холодный воздух снизу и помогали «выбросить» его вверх к выдувающему вентилятору. Наиболее эффективно данная схема может себя показать в редких корпусах с горизонтальным расположением материнской платы, как, например, в легендарном SilverStone Raven RVX01:

А какая схема расположения вентиляторов в вашем системном блоке?

Жидкостные системы охлаждения применяются компьютерными энтузиастами и обычными пользователями. Особенностью систем водяного охлаждения (это название жидкостных систем охлаждения также распространено) является использование для отвода тепла охлаждающей жидкости. Принцип действия СВО ничем не отличается от принципа работы систем охлаждения автомобильных двигателей. Большинство жидкостных систем охлаждения отвечает за отвод тепла с поверхности корпуса процессора. Также распространены СВО, предназначенные для совместной работы с видеоадаптерами. При выборе жидкостных систем охлаждения необходимо прежде всего учитывать показатель рассеиваемой мощности. Эта величина (а она заявляется производителями для любых СВО) должна превышать показатель TDP (аббревиатура, образованная от «thermal design power») процессора. Превышение должно быть с запасом. Чем больше запас – тем выше уровень надежности системы. Самые производительные жидкостные системы охлаждения используются в составе игровых компьютеров, которые рассчитаны на достижение экстремального уровня производительности. Важным для многих пользователей параметром СВО является максимальный уровень шума. Существует два вида систем водяного охлаждения – обслуживаемые и необслуживаемые. Старшие модели СВО в подавляющем большинстве случаев допускают возможность обслуживания. В интернет-магазине DNS вы сможете купить жидкостные системы охлаждения любого уровня. С помощью СВО нужной эффективности вы сможете с легкостью обеспечить безопасность эксплуатации системного блока.