Обогащенный уран

Содержание

Биологическая роль и физиологическое воздействие

Тяжёлая вода токсична лишь в слабой степени, химические реакции в её среде проходят несколько медленнее, по сравнению с обычной водой, водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими (мыши, крысы, собаки) показали, что замещение 25 % водорода в тканях дейтерием приводит к стерильности, иногда необратимой. Более высокие концентрации приводят к быстрой гибели животного; так, млекопитающие, которые пили тяжёлую воду в течение недели, погибли, когда половина воды в их теле была дейтерирована; рыбы и беспозвоночные погибают лишь при 90 % дейтерировании воды в теле. Простейшие способны адаптироваться к 70 % раствору тяжёлой воды, а водоросли и бактерии способны жить даже в чистой тяжёлой воде. Человек может без видимого вреда для здоровья выпить несколько стаканов тяжёлой воды, весь дейтерий будет выведен из организма через несколько дней.
Таким образом, тяжёлая вода гораздо менее токсична, чем, например, поваренная соль. Тяжёлая вода использовалась для лечения артериальной гипертензии у людей в суточных дозах до 1,7 г дейтерия на кг веса пациента.

Другие виды тяжёлых вод

Полутяжёлая вода

Выделяют также полутяжёлую воду (известную также под названиями дейтериевая вода, монодейтериевая вода, гидроксид дейтерия), у которой только один атом водорода замещён дейтерием. Формулу такой воды записывают так: DHO или ²HHO. Следует отметить, что вода, имеющая формальный состав DHO, вследствие реакций изотопного обмена реально будет состоять из смеси молекул DHO, D2O и H2O (в пропорции примерно 2:1:1). Это замечание справедливо и для THO и TDO.

Сверхтяжёлая вода

Основная статья: Сверхтяжёлая вода

Сверхтяжёлая вода содержит тритий, период полураспада которого более 12 лет. По своим свойствам сверхтяжёлая вода (T2O) ещё заметнее отличается от обычной: кипит при 104 °C, замерзает при +9 °C и имеет плотность 1,21 г/см³. Известны (то есть получены в виде более или менее чистых макроскопических образцов) все девять вариантов сверхтяжёлой воды: THO, TDO и T2O с каждым из трёх стабильных изотопов кислорода (16O, 17O и 18O). Иногда сверхтяжёлую воду называют просто тяжёлой водой, если это не может вызвать путаницы. Сверхтяжёлая вода имеет высокую радиотоксичность.

Тяжёлокислородные изотопные модификации воды

Термин тяжёлая вода применяют также по отношению к тяжёлокислородной воде, у которой обычный лёгкий кислород 16O заменён одним из тяжёлых стабильных изотопов 17O или 18O. Тяжёлые изотопы кислорода существуют в природной смеси, поэтому в природной воде всегда есть примесь обеих тяжёлокислородных модификаций. Тяжёлокислородная вода, в частности, 1H218O, используется в ранней диагностике онкологических заболеваний.

Общее число изотопных модификаций воды

Если подсчитать все возможные нерадиоактивные соединения с общей формулой Н2О, то общее количество возможных изотопных модификаций воды всего девять (так как существует два стабильных изотопа водорода и три — кислорода):

  • Н216O − лёгкая вода, или просто вода
  • Н217O
  • Н218O − тяжёлокислородная вода
  • HD16O − полутяжёлая вода
  • HD17O
  • HD18O
  • D216O − тяжёлая вода
  • D217O
  • D218O

С учётом трития их число возрастает до 18:

  • T216O — сверхтяжелая вода
  • T217O
  • T218O
  • DT16O
  • DT17O
  • DT18O
  • HT16O
  • HT17O
  • HT18O

Таким образом, кроме обычной, наиболее распространённой в природе «лёгкой» воды 1H216O, в общей сложности существует 8 нерадиоактивных (стабильных) и 9 слаборадиоактивных «тяжёлых вод».

Всего же общее число возможных «вод» с учётом всех известных изотопов водорода (7) и кислорода (17) формально равняется 476. Однако распад почти всех радиоактивных изотопов водорода и кислорода происходит за секунды или доли секунды (важным исключением является тритий, период полураспада которого более 12 лет). Например, все более тяжёлые, чем тритий, изотопы водорода живут порядка 10−20 с; за это время никакие химические связи просто не успевают образоваться, и, следовательно, молекул воды с такими изотопами не бывает. Радиоизотопы кислорода имеют периоды полураспада от нескольких десятков секунд до наносекунд. Поэтому макроскопические образцы воды с такими изотопами получить невозможно, хотя молекулы и микрообразцы могут быть получены. Интересно, что некоторые из этих короткоживущих радиоизотопных модификаций воды легче, чем обычная «лёгкая» вода (например, 1H215O).

> См. также

  • Вода
  • Лёгкая вода

Тяжелая вода Ирана доставлена в Россию

С той поры, как на нашем сайте появилась рубрика «Акцент», спокойные времена для авторов сайта, похоже, закончились. Команда у нас совсем миниатюрная: два автора и технический директор, на плечи которого взвалена работа еще и по оформлению наших статей-заметок. Это, понятное дело, помимо того, что выпадает на долю технического директора на любом другом сайте: всякие там хостинги, работа с провайдером, возня с вечно норовящим взбрыкнуть «движком» и прочее, прочее, прочее. Мало того: писать мы норовим быстро, ошибки нам искать лень, потому наш технический директор зачастую становится еще и нашим корректором, последним барьером на пути «замученных очупяток». Вредное производство, прямо скажем.

Раньше-то мы думали, что вредное оно только для самого технического директора, поскольку отнимает прорву времени, сил и нервов. Но с появлением «Акцента» ситуация стала меняться… Наш технический директор реально тщательно вычитывает наши статьи и, вместо того, чтобы думать о всех этих пикселях с хостингами, падениях сайта и прочем, он взял, да и увлекся всем тем, что мы пишем. Мало того: судя по всему, ему эти статьи стали нравиться – заразился! И теперь время от времени задает вопросы, из-за которых авторы рвут последние волосы на голове: да как же на человечьем языке разъяснять всяческие шарады, которые господин технический директор вылавливает в новостном потоке. В общем – тяжела и неказиста жисть простого энергиста. Но не ответить на каверзные вопросы у нас никакой возможности нет – вот возьмет технический директор, да и «не заметит» опечатки и ошибки, или картинки по диагонали в статью навтыкает. Ужас, и пожалеть ведь некому…

Вот и недавно пришел очередной простой вопрос от технического директора.

Смотрите, вот какая-то непонятная новость в несколько строк: «Генеральный директор корпорации «Росатом» Сергей Кириенко сообщил, что в сентябре из Ирана в Россию доставлено 38 тонн тяжёлой воды», передаёт РИА Новости.

Об этом он заявил на пленарном заседании 60-й Генеральной конференции МАГАТЭ.

«Могу информировать уважаемых коллег, что 13 и 20 сентября двумя рейсами в Россию доставлено 38 тонн иранской тяжёлой воды», — заявил Кириенко.

Все, пять строк!.. И вопрос: «Можете расшифровать, что за тяжелая вода и зачем ее персы к нам привезли?»

Во-о-от… Пять строк информации, одна строка вопроса. Удастся ли уложиться меньше, чем в пять страниц ответа?.. Будем пробовать.

Тяжелая вода

Что такое «тяжелая вода»? Да понятное дело – вода, которая тяжелее обычной, что тут такого-то! Почему она вдруг тяжелее и при этом все еще вода? Вспоминаем школьную химическую формулу воды. – «аш два о». 2 атома водорода, 1 атом кислорода. За счет чего вода вдруг «потяжелела», спрашивается? Явно в дело вмешался какой-то изотоп. Кандидат очевиден – изотоп водорода. Снова школьная программа: что из себя представляет самый легкий элемент таблицы Менделеева, водород? Прост он и незатейлив: вокруг единственного протона болтается по орбите единственный электрон. Изотопов – два: дейтерий и тритий. Дейтерий обозначают латинской буквой D и отличается он от Н тем, что в нем к протону в ядре умудряется «приклеиться» нейтрон. Тритий – это буква Т и уже два нейтрона, «приклеившихся» к протону.

Изотопы водорода, Фото: http://ovkcompany.ru/

Дейтерий открыли в 1932 году и достаточно быстро выяснили, что изотоп этот стабилен (не разваливается сам по себе), но чрезвычайно редок: в природном водороде его около 0,0115%. Соответственно, тяжелая вода имеет формулу – «дэ два о». Все, несложный ведь вопрос, незамысловатый ответ. Игрушечка такая для физиков да химиков, любящих всякие диковинки – свойства поизучать, химические соединения попридумывать. Тритий, в отличие от дейтерия, не стабилен – период полураспада 12,32 года.

Вот только при чем тут сам глава Росатома и чем важна доставка этих самых 38 тонн тяжелой воды, спрашивается? Неужто делать персам и Кириенко нечего, кроме как затеями у МАГАТЭ время-то отнимать? В чем дело?

Да в сущем пустяке, в ерунде практически. Слышали ли вы когда-нибудь устойчивую идиому «термоядерная бомба»? Нам тоже доводилось. Просто «ядерная бомба» – это неконтролируемая цепная реакция деления ядер урана-235 или плутония-239. Разваливаются ядра этих атомов на разные куски, при этом освобождается «лишняя энергия», давая результаты, о которых до сих пор мы помним по Хиросиме и Нагасаки. А что такое «термоядерная бомба»? Там не распад ядер происходит, а их синтез, соединение. И «лишней энергии» при этом высвобождается многократно больше, взрыв – в десятки и сотни раз мощнее. Даже представлять этого не хочется – не дай бог, как говорится. На ночь глядя представлять не будем, а вот очередной детский вопрос зададим: а что с чем сливается-то в том термоядерном заряде? На простой вопрос – простой ответ: сливаются ядра дейтерия и трития. Начинка термоядерной бомбы – дейтерид лития-6 – , соединение изотопа лития с изотопом водорода. Теперь уже чуточку понятнее, при чем тут Кириенко с МАГАТЭ, не так ли?..

Термоядерный синтез, Фото: greensource.ru

Продолжаем погружаться в подробности. Как «работает» термоядерная бомба? Сначала происходит взрыв простецкой, небольшой такой атомной бомбы – чтобы поднять температуру, до уровня, обеспечивающего начало термоядерной реакции. Дейтерий стабилен, в заряд термоядерной бомбы его поместить не проблема. А вот откуда берется тритий-то? Как термоядерные заряды умудряются хранить десятки лет, если уже через пару лет половина трития распадается? Для получения трития как раз и нужен дейтерид лития. Взрыв атомной бомбы – это не только температура, но и огромный поток нейтронов, под действием которых этот самый дейтерид лития распадается на гелий и необходимый для синтеза тритий. Тритий, таким образом, не хранят – он синтезируется в боеголовке в момент атомного взрыва. А вот хранить дейтерий – приходится, но хранят его не в чистом виде, а в запасах той самой – тяжелой воды.

Итого: передав России свои запасы тяжелой воды, Иран, выполняя условия сделки с МАГАТЭ и мировым сообществом, на деле отказался от перспективы создания собственного термоядерного оружия.

Казалось бы, на этом «перевод» микрозаметки от РИА Новости можно считать законченным? Оказалось, что только казалось – тяжелая вода интересна не только тем, что позволяет хранить запасы дейтерия, но и сама по себе. Вот только извините, но придется «пуститься во все тяжкие» – подробно рассмотреть, что же происходит в атомном реакторе. Честное геоэнергетическое – и в этом случае мы обойдемся без формул и графиков!

В атомном реакторе

Сызнова вспоминаем школьную программу физики, уроки, на которых нам рассказывали про цепную ядерную реакцию. Помните? Нейтрон ударил в атом, тот испустил сразу два нейтрона, которые ударили уже по двум атомам, вылетело уже четыре нейтрона…» Красиво, но совсем уж упрощенно, причем эти ошибки видны не из сложных вычислений на основании заумных формул, а на простой логике. Ядро атома – это комплект протонов и нейтронов, удерживаемых ядерными силами. Вот на такую цель и летит тот самый нейтрон. Что с ним может произойти при столкновении? Очевидно, что есть целых три варианта.

  1. нейтрон врежется в своего же собрата, отскочит и улетит;
  2. «братва» в составе ядра чутка подвинется и примет нейтрон, как родного. При этом этот атом станет чуточку другим – мы получим изотоп атома-мишени;
  3. нейтрон развалит ядро на несколько кусков, в числе которых будут и те самые, школьные, «два других нейтрона».

Физики вариант 1 называют реакцией упругого рассеивания, вариант 2 – реакцией захвата, вариант 3 – реакцией деления. Как видите, ничего алогичного, все вполне стройно. А дальше братья-физики откровенно начудили: вместо того, чтобы использовать слово «вероятность», которое тут просто напрашивается, они ввели термин «эффективное сечение». Эффективное сечение рассеивания, эффективное сечение поглощения или захвата, эффективное сечение деления… Звучит красиво, но уже требует определенной расшифровки. И вот кому от этого стало легче, спрашивается?

Три варианта, а нам-то какой нужен? Упругое рассеивание? Да ну его – не в сквош играем. Захват? Праздник Менделеева – это к химикам. Нам деление давай, причем такое, чтобы количество нейтронов сохранялось постоянным (если после деления их станет больше, чем до него, цепную реакцию уже не удержать под контролем, через короткое время состоится оглушительный взрыв, на чем эксперимент придется считать законченным, поскольку закончатся экспериментаторы).

Легче всего делятся ядра урана-235, что опять же можно понять без формул. Ядро стабильного элемента не разваливается, хотя протоны, входящие в его состав, имеют одинаковый (положительный) электрический заряд. Одинаковые заряды обязаны отталкиваться друг от друга, но этого не происходит. Почему, за счет чего, что мешает такому разлету? На совсем маленьких расстояниях работает сила взаимодействия, которую физики совершенно честно назвали «сильным» – оно ведь сильнее электрического отталкивания, как его еще называть-то? Сильное взаимодействие обеспечивает стабильность ядер всех химических элементов, в том числе и тех из которых состоим мы, человеки.

Чем ближе друг к другу протоны, тем больше сильное взаимодействие кладет на лопатки электромагнитное. Но уран – самый тяжелый из существующих в природе химических элементов, его ядро состоит из целой прорвы протонов, внешние слои которых уже весьма далеки друг от друга. Такое ядро напоминает каплю воды или росы, висящей на кончике листа: капля стабильна, но достаточно очень слабого толчка, чтобы она превратилась в небольшую струйку, лужицу. Ткнул травинкой или чуть тряхнул лист – и капли уже нет. Шлепнул по такому ядру-капле нейтрон – и оно разлетелось брызгами. Или то же самое суконным языком ядерной физики: «эффективное сечение реакции деления ядра урана-235 выше суммы эффективных сечений упругого рассеивания и захвата». И второй основной фактор – количество нейтронов второго и следующих поколений, которые будут (или не будут) вызывать последующие деления, не должно уменьшаться, иначе реакция не будет цепной, а попросту заглохнет. Но и увеличиваться это количество тоже не должно – повторимся, но важно понимать, что при увеличении количества нейтронов вместо управляемой реакции мы получим ядерный взрыв.

Сложновато, но пока все в пределах самой обычной логики. Вопрос прост: как добиться того, чтобы в нашем реакторе как можно чаще случались реакции деления и как можно реже – реакции рассеивания и поглощения? Эксперименты, которые без устали проводили физики, дали следующий результат: чем менее энергичны летящие в цель – ядра урана-235 – нейтроны, тем выше вероятность реакции деления. Оптимальный вариант – когда скорость нейтронов равна скорости теплового колебания атомов в кристаллической решетке. Вот только те же эксперименты показали и проблему: при этих самых реакциях деления скорость «вышибаемых» нейтронов слишком высока – быстрые они, а это увеличивает вероятности упругих рассеиваний и поглощений. Безобразие!

Принцип работы ядерного реактора, Фото: krugosvet.ru

Что делать, где выход? Как говорят в Эстонии: «Если ты слишком быстрый, надо тебя затормозить!» Нам нужен замедлитель. Как замедлить летящий нейтрон? Выставить на его пути легкую и крепкую «мишень»: ядро атома, которую нейтрон пнет, не вызвав при этом никаких ядерных реакций. Пнул мишень – она улетела, но при этом нейтрон потерял часть своей энергии, стал лететь чуточку медленнее. Еще один удар – еще меньше скорость, еще удар – еще медленнее. И к тому времени, когда нейтрон добрался до настоящей цели – ядра урана-235, он летит с нужной нам скоростью. При этом желательно, чтобы нейтрон не был захвачен во время соударений с ядрами замедлителя – потери драгоценных нейтронов нам ни к чему.

В водо-водяных энергетических реакторах (ВВЭР) замедлителем является теплоноситель – сама вода первого контура. Но обычная вода частенько поглощает нейтроны – собственно, по этой причине мы и вынуждены обогащать уран по содержанию урана-235. А вот тяжелая вода нейтроны не поглощает от слова «никогда». Рассказывать про то, почему это так, а не иначе – еще 100500 слов написать, самые любопытные могут поискать самостоятельно, а в этой заметке мы просто зафиксируем как факт: тяжелая вода является идеальным замедлителем. Она настолько хорошо это делает, что существует целый класс «реакторов на тяжелой воде», основная особенность которых – то, что для них уран вообще не обогащают. Вот только получение тяжелой воды – дорогостоящий процесс, да и ОЯТ в них получается в разы более радиоактивным, чем в привычных нам ВВЭР.

Очень надеемся, что ничего невероятно сложного пока не было. Тяжелую воду можно использовать в энергетических реакторах, как это делали и делают в Канаде на реакторах CADMU. Так за каким таким ангелом Ирану в условия отмены санкций вбили вывоз тяжелой воды, спрашивается? Пусть бы себе вырабатывали электроэнергию, чего пристали-то?

Давайте снова припомним ядерные взрывы в Хиросиме и в Нагасаки. Над Хиросимой было взорвано 20 килограммов урана-235, над Нагасаки – 6 килограммов плутония-239. Разрушения и количество жертв было практически одинаковым, то есть плутоний-239 как взрывчатка в три с лишним раза эффективнее урана-235, плутониевая бомба в три раза опаснее и разрушительнее. Все, это последняя техническая деталь – короткое описание того, как нарабатывается плутоний-239. Для бомбы нужен именно плутоний-239, изотопы с номерами 238, 240 и 241 только вредят важному делу создания качественного едрен-батона. Нам уже доводилось пристально рассматривать ОЯТ в случае ВВЭР – если помните, там получается некий коктейль из нескольких изотопов плутония. Для мирного атома это хорошо, для военных целей – безобразие сплошное, да и только.

В годы холодной войны на диком Западе были созданы Weapons-Grade Production Reactor, на что СССР ответил созданием «реакторов – наработчиков оружейного плутония» (РНОП). В обоих случаях получали плутоний-239 с чистотой 94% – то, что надо для военных целей. Как это работало? Напомним, что сейчас остановлены все до одного WGPR и РНОП.

Основные особенности реакторов – наработчиков оружейного плутония (РНОП)

Используется природный или низкообогащенный уран. Почему? Нужно, чтобы уран-238 захватывал нейтрон, превращаясь в нептуний-239, который, собственно, после двух ьета-распадов и превращается в плутоний-239. Если присутствует много урана-235 – он и будет распадаться, уменьшая количество нейтронов для реакций урана-238. Это не наш метод! Мало того: уран-235 в результате всяких там дополнительны реакций норовит дать дополнительное количество ядер плутония-238, а это уже двойное безобразие.

Работают в режиме коротких облучений топлива: через 15-20 дней после начала облучения из урана-238 получают максимально возможное количество нептуния-239. После этого облучение нужно оборвать, блочки с непутнием-239 вытащить из реактора и на те же 15-20 дней поместить в бассейн выдержки, чтобы дать нептунию время, необходимое на тот самый двойной бета-распад, превращающий его в плутоний-239. Заодно эта выдержка уменьшает изначально высокую радиоактивность этих самых блочков – с ними ведь потом как-то работать надо, а не дуба давать раньше срока.

Заключение

Собственно говоря, вы уже все и услышали. ВВЭР не подходит принципиально: в них топливный цикл исчисляется месяцами, а теперь уже и годами, эту махину через 2-3 недели остановить невозможно. Уран – природный или с минимальным обогащением. Вопрос «Что может быть замедлителем?» становится, согласитесь, просто таки риторическим – разумеется, только и исключительно тяжелая вода. Только она замедлит нейтроны, только она позволяет перезаряжать реактор на ходу.

За годы холодной войны в США было создано 14 РНОП, в СССР – 13. Но те времена прошли, уже все остановлено. А что Иран? В 2004 году персы начали работу по сооружению тяжеловодного реактора IR-40. В данном случае цифра 40 – это тепловая мощность, а правила расчета количества плутония-239, которое можно наработать на таком агрегате просто и незатейливо: делим на 3 – это и будет масса плутония за год работы. 11 кило – две бомбы образца Нагасаки.

По соглашению об условиях снятия санкций в Иране были закрыты все заводы по выработке тяжелой воды. 38 тонн, о которых сообщил Кириенко – последние ее запасы, которые потенциально могли обеспечить Ирану возможность создания собственной плутониевой ядерной бомбы. ИР-40 будет конверсирован в исследовательский реактор, на котором можно наработать не более 1 кг плутония-239 за год и поставлен под жесткий контроль МАГАТЭ.

Вот теперь можно подвести окончательную черту: передачей в распоряжение Росатома Иран не на словах, а на деле выполнил все требования сделки – отказался от потенциальной возможности создания ядерного и термоядерного оружия.

На этом простой ответ на «простой вопрос» предлагаем считать законченным. Большое спасибо, уважаемый технический директор сайта «Геоэнергетика» за то, что нам было не скучно!

  • Свойства урана
  • Урановая руда: характеристики и классификации
  • Современное применение урана
  • Добыча урановой руды в России: что для этого необходимо?
  • Месторождения урановых руд в России
  • Крупнейшие месторождения по добыче урана в мире – страны лидеры
  • Запасы и объемы добычи урановой руды России

В последние несколько все большей актуальности набирает тема ядерной энергетики. Для производства атомной энергии принято использовать такой материал, как уран. Он представляет собой химический элемент, относящийся к семейству актинидов.

Химическая активность этого элемента обуславливает тот факт, что он не содержится в свободном виде. Для его производства используются минеральные образования под названием урановые руды. В них концентрируется такое количество топлива, которое позволяет считать добычу этого химического элемента экономически рациональной и выгодной. На данный момент в недрах нашей планеты содержание этого металла превышает запасы золота в 1000 раз (см. Всё о добыче золота. Где и как добывается золото?). В целом залежи данного химического элемента в грунте, водной среде и горной породе оцениваются в более чем 5 миллионов тонн.

Российская разработка, позволяющая добывать золото из каменного угля

Добыча урановой руды в России: что для этого необходимо?

Добыча урановой руды открытым способом

Добыча радиоактивных руд осуществляется тремя основными технологиями. Если залежи руды сконцентрированы максимально близко к поверхности земли, то для их добычи принято использовать открытую технологию. Она предусматривает использование бульдозеров и экскаваторов, которые роют ямы большого размера и грузят полученные полезные ископаемые в самосвалы. Далее она отправляется в перерабатывающий комплекс.

При глубоком залегании этого минерального образования принято использовать подземную технологию добычи, предусматривающую создание шахты глубиной до 2-х километров. Третья технология существенно отличается от предыдущих. Подземное выщелачивание для разработки месторождений урана предполагает бурение скважин, через которые в залежи закачивается серная кислота. Далее осуществляется бурение еще одной скважины, которая необходима для выкачивания полученного раствора на поверхность земли. Затем он проходит процесс сорбции, позволяющий собрать соли этого металла на специальной смоле. Последний этап технологии СПВ – циклическая обработка смолы серной кислотой. Благодаря такой технологии концентрация этого металла становится максимальной.

Запасы и объемы добычи урановой руды в России

Разведанные запасы урана в нашей стране оцениваются в более чем 400 тысяч тонн. При этом показатель прогнозируемых ресурсов составляет более 830 тысяч тонн. По состоянию на 2017 год в России действует 16 урановых месторождений. Причем 15 из них сосредоточены в Забайкалье. Главным месторождением урановой руды считается Стрельцовское рудное поле. В большинстве отечественных месторождениях добыча осуществляется шахтным способом.

Интересные факты

  • Уран был открыт еще в XVIII веке. В 1789 году немецкий ученый Мартин Клапрот сумел произвести из руды металлоподобный уран. Что интересно, этот ученый также является первооткрывателем титана и циркония.
  • Соединения урана активно используют в сфере фотодела. Этот элемент применяется для окрашивания позитивов и усиления негативов.
  • Главным отличием урана от других химических элементов является естественная радиоактивность. Атомы урана имеют свойство самостоятельно изменяться с течением времени. При этом они испускают лучи, невидимые глазу человека. Эти лучи делятся на 3 вида – гамма-, бета- альфа-излучения (см. Что такое радиация? Действие радиации на организм. Характеристика зон радиоактивного заражения.).

Причины обогащения

Цепная ядерная реакция подразумевает что хотя бы один нейтрон из образованных распадом атома урана будет захвачен другим атомом и, соответственно, вызовет его распад. В первом приближении это означает что нейтрон должен «наткнуться» на атом 235U раньше чем покинет пределы реактора. Значит, конструкция с ураном должна быть достаточно компактной чтобы вероятность найти следующий атом урана для нейтрона была достаточно высока. Но по мере работы реактора 235U постепенно выгорает, что уменьшает вероятность встречи нейтрона и атома 235U, что вынуждает закладывать в реакторах определенный запас этой вероятности. Соответственно, низкая доля 235U в ядерном топливе вызывает необходимость в:

  • большем объёме реактора, чтобы нейтрон дольше в нём находился;
  • бóльшую долю объёма реактора должно занимать топливо, чтобы повысить вероятность столкновения нейтрона и атома урана;
  • чаще требуется перезагружать топливо на свежее, чтобы сохранять заданную объемную плотность 235U в реакторе;
  • высокой доле ценного 235U в отработавшем топливе.

В процессе совершенствования ядерных технологий были найдены экономически и технологически оптимальные решения, требующие повышения содержания 235U в топливе, то есть обогащения урана.

В ядерном оружии задача обогащения практически такая же: требуется чтобы за предельно короткое время ядерного взрыва максимальное число атомов 235U нашли свой нейтрон, распались и выделили энергию. Для этого нужна предельно возможная объемная плотность атомов 235U, достижимая при предельном обогащении.

Степени обогащения урана

Природный уран с содержанием 235U 0,72 % находит применение в некоторых энергетических реакторах (например, в канадских CANDU), в реакторах-наработчиках плутония (например, А-1).

Уран с содержанием 235U до 20 % называют низкообогащённым (англ. Low enriched uranium, LEU). Уран с обогащением 2—5 % в настоящее время широко используется в энергетических реакторах по всему миру. Уран с обогащением до 20 % используется в исследовательских и экспериментальных реакторах.

Уран с содержанием 235U свыше 20 % называют высокообогащённым (англ. Highly enriched uranium, HEU) или оружейным. На заре ядерной эры были построены несколько образцов ядерного оружия пушечной схемы на основе урана с обогащением около 90 %. Высокообогащённый уран может использоваться в термоядерном оружии в качестве тампера (обжимающей оболочки) термоядерного заряда. Кроме того, уран с высоким обогащением используется в энергетических ядерных реакторах с длительной топливной кампанией (то есть с редкими перезагрузками или вовсе без перезагрузки), например в реакторах космических аппаратов или корабельных реакторах.

В отвалах обогатительных производств остается обеднённый уран с содержанием 235U 0,1—0,3 %. Он широко используется в качестве сердечников бронебойных снарядов артиллерийских орудий благодаря высокой плотности урана и дешевизне обеднённого урана. В будущем предполагается использование обеднённого урана в реакторах на быстрых нейтронах, где не поддерживающий цепную реакцию Уран-238 может трансмутировать в Плутоний-239, поддерживающий цепную реакцию. Полученное MOX-топливо может быть использовано в традиционных энергетических реакторах на тепловых нейтронах.

Технологии

Основная статья: Разделение изотопов

Известно много методов разделения изотопов. Большинство методов основано на разной массе атомов разных изотопов: 235-й немного легче 238-го из-за разницы в количестве нейтронов в ядре. Это проявляется в разной инерции атомов. Например, если заставить атомы двигаться по дуге, то тяжёлые будут стремиться двигаться по большему радиусу чем лёгкие. На этом принципе построены электромагнитный и аэродинамический методы. В электромагнитном методе ионы урана разгоняются в ускорителе элементарных частиц и закручиваются в магнитном поле. В аэродинамическом методе газообразное соединение урана продувается через специальное сопло-улитку. Похожий принцип в газовом центрифугировании: газообразное соединение урана помещается в центрифугу, где инерция заставляет тяжёлые молекулы концентрироваться у стенки центрифуги. Термодиффузионный и газодиффузионный методы используют разницу в подвижности молекул: молекулы газа с лёгким изотопом урана более подвижны чем тяжёлые. Поэтому они легче проникают в мелкие поры специальных мембран при газодиффузионной технологии. При термодиффузионном методе менее подвижные молекулы концентрируются в более холодной нижней части разделительной колонны, вытесняя более подвижные в верхнюю горячую часть. Большинство методов разделения работают с газообразными соединениями урана, чаще всего с UF6.

Многие из методов пытались использовать для промышленного обогащения урана, однако в настоящее время практически все мощности по обогащению работают на основе газового центрифугирования. Наряду с центрифугированием в прошлом широко использовался газодиффузионный метод. На заре ядерной эры использовались электромагнитный, термодиффузии, аэродинамический методы. На сегодняшний день центрифугирование демонстрирует наилучшие экономические параметры обогащения урана. Однако ведутся исследования перспективных методов разделения, например, лазерное разделение изотопов.