Норадреналин и серотонин


nanovodka

Великая Нановодка, по моему представлению, должна делать одну, но очень сложную штуку. А именно — нормализировать нейромедиаторный баланс в организме, а вместе с ним — и физическое с психическим самочувствие.
Я на свою беду очень хорошо помню свое психическое состояние в до-алкогольный период (20 лет назад примерно). Полное отсутствие тревожности, повседневная эйфория, доходящая до подозрений на алкогольное опьянение (как раз шла горбачевская антиалкогольная кампания, и за появление пьяным в общественных местах можно было схлопотать неприятности по учебе). Все это — за счет естественного, генетически обусловленного нейромедиаторного баланса.
Через 20 лет употребления алкоголя обычный эмоциональный фон стал совсем другим: «загруженность», постоянное беспокойство, что чего-то не сделал, нежелание расслабляться, т.к. непонятно совершенно, что в этом расслабленном состоянии делать. Для переживания чего-то отдаленно напоминающего былую эйфорию требуется 40-60 мл спиртового эквивалента. Таким образом, обычная водка легко (хотя и не быстро) смещает естественный баланс типа «вечный кайф» к состоянию «вечный загруз». Чтобы разобраться, как она это делает, мы и создали данное комьюнити.
Однако пока я буду разбираться с водкой, она (точнее, последствия ее употребления) будет разбираться со мной 🙂 Работа в состоянии «загруза» не так уж продуктивна; вполне естественно попробовать как-то восстановить баланс уже сейчас, не дожидаясь полного завершения проекта (2035 год, если не ошибаюсь). Восстанавливать баланс можно несколькими способами:
1) заместительным — пополнять недостачу эндогенных медиаторов экзогенными (кушать фенибут с фенотропилом, например); но в силу своего экстремизма я считаю этот путь стратегически ошибочным, т.к. замещать водочку можно и просто водочкой (что благополучно делают мои более пьющие знакомые)
2) ре-адаптационным — с помощью какого-то супервещества (т.е. нановодки) сместить баланс в обратную сторону (грубо говоря, 3-4 часа тебе очень хреново, а потом 2-3 дня «похмелье» — очень хорошо и бодренько; 20 лет так попьянствовать, и будет все как в молодости); но это пока что полная фантастика;
3) компенсаторным — создать условия, при которых организм сам повысит выработку эндогенных медиаторов (классический метод — тяжелая физическая нагрузка, при которой адреналин-норадреналин-допамин хочешь не хочешь, а вырабатывать приходится, и настроение приходит в норму).
Вот этот третий способ я и предлагаю проработать поподробнее. Что нужно организму для выработки медиаторов? Во-первых, конечно, сигнал — давай, мол, работай. А во-вторых — производственные мощности, т.е. запасы исходных материалов и химических агентов, осуществляющих этот самый синтез. Моя гипотеза (для критиканов: гипотеза!) заключается в том, что если обеспечить организму избыточные запасы исходных материалов — то и синтез нужных медиаторов начнет происходить с большей легкостью.
Ну а теперь давайте выложим сюда все, что знаем о синтезе основных медиаторов и модуляторов. Начнем с таблицы 1982 года (Г.Шеперд, «Нейробиология», т.1, с. 215):

Ацетилхолин

Это первый нейромедиатор, который открыли ученые. Он отвечает за передачу импульсов двигательными нейронами — а значит, за все движения человека. В центральной нервной системе нейромедиатор берет на себя стабилизирующие функции: выводит мозг из состояния покоя, когда необходимо действовать, и наоборот, тормозит передачу импульсов, когда необходимо сосредоточиться. В этом ему помогают два типа рецепторов — ускоряющие никотиновые и тормозящие мускариновые.
Ацетилхолин играет важную роль в процессе обучения и формирования памяти. Для этого требуется как способность фокусировать внимание (и тормозить передачу отвлекающих импульсов), так и способность переключаться с одного предмета на другой (и ускорять реакцию). Активная работа мозга, например, при подготовке к экзамену или годовому отчету, приводит к повышению уровня ацетилхолина. Если мозг долгое время бездействует, специальный фермент ацетилхолинэстераза разрушает медиатор, и действие ацетилхолина слабеет. Идеальный для учебы, ацетилхолин будет плохим помощником в стрессовых ситуациях: это медиатор размышления, но не решительных действий.
Переизбыток ацетилхолина в организме вызывает спазм всех мышц, судороги и остановку дыхания — именно на такой эффект рассчитаны некоторые нервно-паралитические газы. Недостаток ацетилхолина приводит к развитию болезни Альцгеймера и других видов старческой деменции. В качестве поддерживающей терапии пациентам назначают препарат, блокирующий разрушение ацетилхолина — ингибитор ацетилхолинэстеразы.
Ген CHRNA3 кодирует никотиновый рецептор ацетилхолина, на который может воздействовать никотин. На первом этапе вещество действует на симпатическую систему организма, которая отвечает за спазм гладкой мускулатуры и сокращение сосудов. Поэтому у начинающих курильщиков сигареты вызывают скорее тошноту и бледность кожи, чем восторг. Но со временем никотин достигает клеток головного мозга и активизирует рецепторы ацетилхолина. Так как этим занимается и никотин, и ацетилхолин одновременно, мозг пытается скорректировать «двойную подачу», и через некоторое время нейроны головного мозга сокращают нормальное производство ацетилхолина. С этого момента никотин будет нужен курильщику по каждому поводу — с утра чтобы взбодриться, после совещания наоборот, чтобы успокоиться, после обеда — чтобы хоть немного подумать о вечном.
Полиморфизм гена CHRNA3 влияет на скорость формирования никотиновой зависимости и, как следствие, на риск развития рака лёгких, вызванного курением.

Аденозин

Все химические реакции в организме требуют затраты энергии. В качестве валюты в этом процессе используется молекула аденина с несколькими основаниями фосфорной кислоты. Сразу после «зарплаты» у вас на карточке окажется «триста рублей» — молекула аденозинтрифосфат с тремя остатками фосфорной кислоты. На каждую транзакцию уходит по сто рублей, соответственно, после первой «покупки» на счету останется всего двести рублей (аденозиндифосфат), после второй — сто рублей (аденозинмонофосфат), после третьей — ноль рублей.

Купюра в ноль рублей — и есть аденозин. Как нейромедиатор он отвечает за чувство усталости и засыпание. Во время сна купюрам в ноль-ноль рублей дорисовывают троечки, аденозин трансформируется в аденозинтрифосфат, и мы с новыми силами готовы вернуться к работе.
Есть способ обмануть «банковскую систему»: заблокировать рецепторы аденозина и уйти в кредит. Именно этим и занимается кофеин — позволяет игнорировать усталость и продолжать работать. При этом он не приносит настоящей энергии, а только дает тратить деньги, как если у вас всё ещё есть триста рублей. Как и за любой кредит, за перерасход приходится расплачиваться — большей усталостью, заторможенностью внимания, привыканием. Тем не менее, кофеиносодержащие кофе, чай и шоколад — самый популярный стимулятор в мире.
Всего известно четыре вида рецепторов аденозина, которые активируются и блокируются аденозином. Ген ADORA2A кодирует рецепторы аденозина второго типа, которые участвуют в активации противовоспалительных процессов, формировании иммунного ответа, регуляции боли и сна. От работы этого рецептора зависит скорость реакции организма на ранение и травму.

Глутамат

Глутаминовая кислота в форме глутамата — пищевая аминокислота, которая содержится в продуктах животного происхождения. Вкусовые рецепторы воспринимают глутамат как индикатор белковой пищи — а значит питательной и полезной — и оставляют заметку, что было вкусно, и надо повторить. В двадцатом веке японские ученые выяснили принцип восприятия этого вкуса (они назвали его «умами» — вкусный), и со временем глутамат натрия стал популярной пищевой добавкой. Именно благодаря ему иногда сложно устоять перед соблазном съесть лапшу доширак. Как пищевая добавка глутамат не влияет напрямую на работу нейронов, поэтому его «передозировка» в худшем случае обойдется головной болью.
Глутамат — это не только пищевая аминокислота, но и важный нейромедиатор, рецепторы которого есть у 40% нейронов головного мозга. Он не имеет собственной «смысловой нагрузки», а только ускоряет передачу сигнала другими рецепторами — дофаминовыми, норадреналиновыми, серотониновыми и т.д. Эта функция позволяет глутамату формировать синаптическую пластичность — способность синапсов регулировать свою активность в зависимости от реакции постсинаптических рецепторов. Этот механизм лежит в основе процесса обучения и работы памяти.
Снижение активности глутамата приводит к вялости и апатии. Переизбыток — к «перенапряжению» нервных клеток и даже их гибели, как если бы на электрическую сеть дали большую нагрузку, чем она способна выдержать. «Перегорание» нейронов — эксайтотоксичность — наблюдается после приступов эпилепсии и при нейродегенеративных заболеваниях.
Две группы генов кодируют белки-транспортеры глутамата. Гены группы EAAT отвечают за натрий-зависимые белки — те самые, которые участвуют в процессе запоминания. Мутации в генах этой группы повышают риск инсульта, болезни Альцгеймера, болезни Гентингтона, бокового амиотрофического склероза. Мутации в генах везикулярных белков-транспортеров группы VGLUT ассоциированы с риском шизофрении.

Гамма-аминомасляная кислота

У каждой инь есть свой ян, и у глутамата есть вечный его противник, с которым он тем не менее неразрывно связан. Речь идет о главном тормозном нейромедиаторе — гамма-аминомасляной кислоте (ГАМК или GABA). Так же как и глутамат, ГАМК не вносит новых цветов в палитру мозговой активности, а только регулирует активность других нейронов. Так же как и глутамат, ГАМК охватил сетью своих рецепторов около 40% нейронов головного мозга. И глутамат, и ГАМК синтезируются из глутаминовой кислоты и по существу являются продолжением друг друга.
Для описания эффекта ГАМК идеально подходит поговорка «тише едешь — дальше будешь»: тормозящий эффект медиатора позволяет лучше сосредоточиться. ГАМК снижает активность самых разных нейронов, в том числе связанных с чувством страха или тревоги и отвлекающих от основной задачи. Высокая концентрация ГАМК обеспечивает спокойствие и собранность. Снижение концентрации ГАМК и нарушение баланса в вечном сопротивлении с глутаматом приводит к синдрому дефицита внимания (СДВГ). Для повышения уровня ГАМК хорошо подходят прогулки, йога, медитации, для снижения — большинство стимуляторов.
У гамма-аминомасляной кислоты два типа рецепторов — быстрого реагирования GABA-A и более медленного действия GABA-B. Ген GABRG2 кодирует белок рецептора GABA-A, который резко снижает скорость передачи импульсов в головном мозге. Мутации в гене связаны с эпилепсией и фебрильными судорогами, которые могут возникать при высокой температуре.

Если дофамин, серотонин и норадреналин — голливудские актеры большой нейронной киноиндустрии, то герои второй части рассказа о нейромедиаторах скорее работают за кадром. Но без их незаметного вклада большое кино было бы совсем другим.
В следующей части «Атлас» расскажет о пептидах и опиодиах — эта тема требует отдельного разговора.
P.S. Начало и продолжение.

Потрясающая книга про интровертов и экстравертов.
Я так не люблю узкие деления на типы темперамента, но в данной книге (хоть автор максимально разграничивает эти два типа) там много интересного и точно определяющего, что оторваться почти невозможно.
«Дофамин – это мощный нейромедиатор, самым тесным образом связанный с движением, вниманием, состоянием бдительности и познавательными процессами. Рита Картер в своей книге «Картирование ума» утверждает: «Когда дофамина слишком много, это, по-видимому, вызывает галлюцинации и приводит к паранойе. Слишком малое количество дофамина, как известно, вызывает тремор и приводит к неспособности произвольно делать движение, а также, судя по всему, вызывает чувство бессмысленности существования, апатии и ощущение несчастья. Недостаточное количество дофамина также приводит к ослаблению внимания, неспособности сосредоточиваться, разнообразным нездоровым пристрастиям и уходу в себя». Поэтому совершенно необходимо, чтобы в организме присутствовало достаточное количество дофамина. Этот нейромедиатор выполняет также другую очень важную функцию.
Поскольку экстраверты отличаются малой чувствительностью к дофамину и при этом требуют большие количества этого нейромедиатора, то каким образом они его получают в нужной дозе? Определенные части мозга выделяют некоторое количество дофамина. Но экстравертам, чтобы мозг произвел больше дофамина, нужен и его сообщник, адреналин, который выделяется при действии симпатической нервной системы. Таким образом, чем более активен экстраверт, тем больше «доз счастья» выстреливается в кровь и тем больше дофамина производит мозг. Экстраверты чувствуют себя хорошо, когда они куда-то отправляются и встречаются с людьми.
Интроверты, со своей стороны, очень чувствительны к дофамину. Если его слишком много, они начинают чувствовать перевозбуждение. Интроверты используют как доминирующий совсем другой нейромедиатор – ацетилхолин.
Ацетилхолин – это еще один важный нейромедиатор, связанный со многими жизненно важными функциями мозга и всего организма. Он влияет на внимание и познавательные процессы (особенно основанные на восприятии), на способность сохранять спокойную бдительность и использовать долгосрочную память, активизирует произвольные движения. Он стимулирует ощущение удовлетворенности в процессе мышления и чувствования. Многие исследования последнего времени укрепляют наше понимание процессов, происходящих в мозге и во всем организме интроверта.
Ацетилхолин был первым из идентифицированных нейромедиаторов, но, по мере того как распознавались и другие, фокус внимания исследователей переместился на них. Однако совсем недавно была обнаружена связь между недостатком ацетилхолина и болезнью Альцгеймера. Открытие вызвало новые исследования этого нейромедиатора и его связи с хранилищем памяти и сновидениями. По-видимому, ацетилхолин играет важную роль в процессе сна и видении снов. Мы видим сны, когда находимся в стадии быстрого сна. Ацетилхолин включает эту стадию и запускает механизм сновидений, после чего «парализует» наше тело (отключает функцию произвольного движения), с тем чтобы мы не могли «выделывать» то, что видим во сне. Исследователи находят, что нам нужен сон, чтобы закодировать воспоминания, перемещая их в фазе быстрого сна из краткосрочной памяти в долгосрочную. Как утверждает Роналд Котьюлак в своей книге «Ум изнутри»: «Адетилхолин выступает в роли масла, которое запускает механизм функции памяти. Когда оно высыхает, механизм замерзает». Тут есть одна любопытная деталь. Снижению уровня ацетилхолина препятствует эстроген. В этом состоит одна из причин, почему во время менопаузы, когда уровень эстрогена уменьшается, женщины начинают ощущать ухудшение памяти. Итак, интровертам требуется ограниченное количество дофамина, но уровень ацетилхолина должен быть высоким, тогда они могут чувствовать себя спокойно, не впадать в депрессию или беспокойство. Это довольно узкая зона психологического комфорта.
Открытие используемых интровертным и экстравертным мозгом нейромедиаторов, по сути, кардинально, поскольку из него следует, что, когда мозг выделяет их, они также задействуют автономную нервную систему. Это система, которая соединяет ум с телом и оказывает мощное влияние на принимаемые нами решения по поводу собственного поведения и реакции на окружающий мир. Я думаю, что цепочка нейромедиаторов, проходящих теми или иными путями, и способ их соединения с различными частями автономной нервной системы являются основным ключом к разгадке тайны темперамента. В то время как экстраверты соединены с дофаминово-адреналиновой энергозатратной симпатической нервной системой, интроверты связаны с ацетилхолиновой, энергосберегающей, парасимпатической нервной системой.»
Дальше даже описывается работа мозга интроверта и экстраверта. Интересно, ведь в любом организме человека синтезируются эти нейромедиаторы, след. логично предположить, что если повысить дозу дофамина (внезапно начать прыгать с парашюта или участвовать в гонках), мозг должен как бы перестроиться на более экстравертное мышление… Или напротив, ограничив дофамин (став отшельником в пещере) и увеличив медитации и осмысленность существования, организм начнет вырабатывать больше ацетилхолина (привет яркие сны!).
По сути именно удачная попытка освоить что-то новое и изначально не совсем привычное (может даже неинтересное для экстраверта или изматывающее для интроверта), позволяет человеку быть мультипаспорт полноценно развитым существом). Быть и глубоко духовным и раскованно общественным.
По крайней мере хотелось бы в это верить, иначе печалька.
«Неисправимый интроверт» Марти Ольсен Лэйни

Дофамин (2-этиламин, окситирамин) – это нейрогормон (выполняет функции гормона и нейромедиатора), из которого впоследствии синтезируются катехоламины адреналин и норадреналин.

По химической природе также является катехоламином. Синтезируется преимущественно клетками головного мозга, в небольших количествах — клетками нервной ткани надпочечников. Содержится во многих тканях и органах (например, в кишечнике, печени, почках, легких).

В организме дофамин выполняет роль нейромедиатора, т.е. благодаря ему осуществляется передача импульса от нервных клеток к рабочему органу. Он повышает двигательную активность, снижает гипертонус мышц, а также тормозит выработку некоторых гормонов гипофиза (эндокринная железа, расположенная в головном мозге), таких как пролактин, соматотропный гормон, кортикотропный гормон. Повышение уровня этих гормонов проявляется в виде различных заболеваний. Нарушение (снижение) синтеза дофамина является причиной болезни Паркинсона — неврологического заболевания, которое проявляется снижением общей активности, расстройством двигательных функций, скованностью мышц и тремором (дрожанием) конечностей.

Как гормон дофамин воздействует на сердечно-сосудистую систему: влияет на артериальное давление, повышая его, увеличивает частоту сердечных сокращений, ускоряет транспортировку кислорода к миокарду. Кроме того, он усиливает кровоток в почках и почечную фильтрацию, оказывает тормозящее действие на перистальтику желудка и кишечника и др. Усиленная выработка дофамина происходит в шоковых состояниях организма – при травмах и ожогах, значительных кровопотерях, сильных болевых ощущениях, в стрессовых ситуациях, при страхе и тревоге. Кроме того, повышенный уровень гормона наблюдается при заболеваниях почек, обусловленных ухудшением их кровообращения. В здоровом организме дофамин выводится с мочой.

Анализ на дофамин входит в группу исследований гормонов катехоламинов. Совместно с ним назначается выявление уровня андреналина и норадреналина. Оценка состояния организма осуществляется по соотношению этих показателей.

Анализ обнаруживает концентрацию дофамина в крови (пг/мл).