Многозадачность в ардуино

Arduino.ru

=======================

Поясняю, если с аглицким нелады, чел сделал на АВР эмулятор АРМа с мемори-менеджментом и 32 битами.

Я хотел еще долго издеваться, но подумал про гуманизм ну и милосердие всякое ;), к тому же, при всей моей нелюбви к детям, кто-то же должен их учить?

АВР — это не процессор, а контроллер. У них разные назначения. ОС для контроллеров бывают, их цели — управление потоками и синхронизация. (Читать про RTOS и подобные)

Универсальные ОС, как Линух, ставятся на системы с универсальными процессорами. Две вещи в камне необходимы совершенно: MMU -Мемори Менеджмент Юнит, и 32 (хотя бы) разрядная архитектура. Нужно для вытесняющей мультизадачности. Кроме того гарвардская архитектура (гуглим!) в принципе не позволяет менять память программ во время исполнения. Значит никакая загрузка кода уже не может существовать.

Надеюсь я дал достаточно материала, чтобы дальше разобраться самому и понять почему над Вами смеялись. Полагаю, что через день-два чтения инета, Вы и сами станете смеяться над подобным вопросом.

Нам понадобится:

  • Arduino UNO или иная совместимая плата;
  • 1 светодиод (вот из такого набора, например);
  • 1 пьезопищалка (вроде этой);
  • персональный компьютер со средой разработки Arduino IDE.

Инструкция по созданию параллельных потоков в программе для Arduino

2 Управление светодиодом и пьезоизлучателемс помощью оператора delay()

Напишем вот такой скетч и загрузим его в Ардуино.

const int soundPin = 3; /* объявляем переменную с номером пина, на который подключён пьезоэлемент */ const int ledPin = 13; // объявляем переменную с номером пина светодиода void setup() { pinMode(soundPin, OUTPUT); // объявляем пин 3 как выход. pinMode(ledPin, OUTPUT); // объявляем пин 13 как выход. } void loop() { // Управление звуком: tone(soundPin, 700); // издаём звук на частоте 700 Гц delay(200); tone(soundPin, 500); // на частоте 500 Гц delay(200); tone(soundPin, 300); // на частоте 300 Гц delay(200); tone(soundPin, 200); // на частоте 200 Гц delay(200); // Управление светодиодом: digitalWrite(ledPin, HIGH); // зажигаем delay(200); digitalWrite(ledPin, LOW); // гасим delay(200); }

После включения видно, что скетч выполняется не совсем так как нам нужно: пока полностью не отработает сирена, светодиод не мигнёт, а мы бы хотели, чтобы светодиод мигал во время звучания сирены. В чём же здесь проблема?

Дело в том, что обычным образом эту задачу не решить. Задачи выполняются микроконтроллером строго последовательно. Оператор delay() задерживает выполнение программы на указанный промежуток времени, и пока это время не истечёт, следующие команды программы не будут выполняться. Из-за этого мы не можем задать разную длительность выполнения для каждой задачи в цикле loop() программы. Поэтому нужно как-то сымитировать многозадачность.

3Параллельные процессы без оператора «delay()»

Вариант, при котором Arduino будет выполнять задачи псевдо-параллельно, предложен разработчиками Ардуино. Суть метода в том, что при каждом повторении цикла loop() мы проверяем, настало ли время мигать светодиодом (выполнять фоновую задачу) или нет. И если настало, то инвертируем состояние светодиода. Это своеобразный вариант обхода оператора delay().

const int soundPin = 3; // переменная с номером пина пьезоэлемента const int ledPin = 13; // переменная с номером пина светодиода const long ledInterval = 200; // интервал мигания светодиодом, мсек. int ledState = LOW; // начальное состояние светодиода unsigned long previousMillis = 0; // храним время предыдущего срабатывания светодиода void setup() { pinMode(soundPin, OUTPUT); // задаём пин 3 как выход. pinMode(ledPin, OUTPUT); // задаём пин 13 как выход. } void loop() { // Управление звуком: tone(soundPin, 700); delay(200); tone(soundPin, 500); delay(200); tone(soundPin, 300); delay(200); tone(soundPin, 200); delay(200); // Мигание светодиодом: // время с момента включения Arduino, мсек: unsigned long currentMillis = millis(); // Если время мигать пришло, if (currentMillis — previousMillis >= ledInterval) { previousMillis = currentMillis; // то запоминаем текущее время if (ledState == LOW) { // и инвертируем состояние светодиода ledState = HIGH; } else { ledState = LOW; } digitalWrite(ledPin, ledState); // переключаем состояние светодиода } }

Существенным недостатком данного метода является то, что участок кода перед блоком управления светодиодом должен выполняться быстрее, чем интервал времени мигания светодиода «ledInterval». В противном случае мигание будет происходить реже, чем нужно, и эффекта параллельного выполнения задач мы не получим. В частности, в нашем скетче длительность изменения звука сирены составляет 200+200+200+200 = 800 мсек, а интервал мигания светодиодом мы задали 200 мсек. Но светодиод будет мигать с периодом 800 мсек, что в 4 раза больше того, что мы задали.

Вообще, если в коде используется оператор delay(), в таком случае трудно сымитировать псевдо-параллельность, поэтому желательно его избегать.

В данном случае нужно было бы для блока управления звуком сирены также проверять, пришло время или нет, а не использовать delay(). Но это бы увеличило количество кода и ухудшило читаемость программы.

4Использование библиотеки ArduinoThreadдля создания параллельных потоков

Чтобы решить поставленную задачу, воспользуемся замечательной библиотекой ArduinoThread, которая позволяет с лёгкостью создавать псевдо-параллельные процессы. Она работает похожим образом, но позволяет не писать код по проверке времени – нужно выполнять задачу в этом цикле или не нужно. Благодаря этому сокращается объём кода и улучшается читаемость скетча. Давайте проверим библиотеку в действии.

Библиотека ArduinoThread

Первым делом скачаем с официального сайта архив библиотеки и разархивируем его в директорию libraries/ среды разработки Arduino IDE. Затем переименуем папку ArduinoThread-master в ArduinoThread.

Схема подключений останется прежней. Изменится лишь код программы.

#include <Thread.h> // подключение библиотеки ArduinoThread const int soundPin = 3; // переменная с номером пина пьезоэлемента const int ledPin = 13; // переменная с номером пина светодиода Thread ledThread = Thread(); // создаём поток управления светодиодом Thread soundThread = Thread(); // создаём поток управления сиреной void setup() { pinMode(soundPin, OUTPUT); // объявляем пин 3 как выход. pinMode(ledPin, OUTPUT); // объявляем пин 13 как выход. ledThread.onRun(ledBlink); // назначаем потоку задачу ledThread.setInterval(1000); // задаём интервал срабатывания, мсек soundThread.onRun(sound); // назначаем потоку задачу soundThread.setInterval(20); // задаём интервал срабатывания, мсек } void loop() { // Проверим, пришло ли время переключиться светодиоду: if (ledThread.shouldRun()) ledThread.run(); // запускаем поток // Проверим, пришло ли время сменить тональность сирены: if (soundThread.shouldRun()) soundThread.run(); // запускаем поток } // Поток светодиода: void ledBlink() { static bool ledStatus = false; // состояние светодиода Вкл/Выкл ledStatus = !ledStatus; // инвертируем состояние digitalWrite(ledPin, ledStatus); // включаем/выключаем светодиод } // Поток сирены: void sound() { static int ton = 100; // тональность звука, Гц tone(soundPin, ton); // включаем сирену на «ton» Гц if (ton }

В программе мы создаём два потока – ledThread и soundThread, каждый выполняет свою операцию: один мигает светодиодом, второй управляет звуком сирены. В каждой итерации цикла для каждого потока проверяем, пришло ли время его выполнения или нет. Если пришло – он запускается на исполнение с помощью метода run(). Главное – не использовать оператор delay(). В коде даны более подробные пояснения.

Параллельное выполнение потоков на Arduino

Загрузим код в память Ардуино, запустим. Теперь всё работает в точности так, как надо!