Микродуговое оксидирование алюминия

Промышленный и кустарный метод анодирования алюминия

Как известно, изделия из алюминия и его сплавов достаточно быстро и неравномерно окисляются, в результате чего тот же корпус самоделки покрывается серыми пятнами. Этого можно избежать, если провести анодирование поверхности. В результате металл равномерно покрывается пассивной пленкой, которая препятствует дальнейшему окислению. При желании анодированную поверхность несложно окрасить обычным анилиновым красителем.

Для того, чтобы провести анодирование, ничего особенного вам не понадобится. Нужна пищевая сода, поваренная соль, вода, алюминиевая емкость и источник постоянного напряжения на 12 В, обеспечивающий ток до 2 А.

Для приготовления электролита готовят два раствора – насыщенный соды и насыщенный соли. Для этого соль и соду отдельно растворяют в кипяченой воде комнатной температуры. Для получения качественных насыщенных растворов растворение нужно вести не менее получаса периодически добавляя соль (соду) и помешивая. После этого оба раствора отстаивают 15 мин и процеживают.

Для приготовления электролита понадобится 9 частей раствора соды и 1 часть раствора соли. Все операции проводят в стеклянной посуде.

Перед анодированием заготовку нужно зачистить мелкозернистой наждачной бумагой, обезжирить в горячем растворе любого стирального порошка и промыть проточной водой. После этого заготовки касаться руками нельзя. Анодирование ведется током плотностью 12 мА/см 2. Для вычисления общего тока (в амперах) придется посчитать общую площадь детали (в см 2 )и умножить на 0.015.

Анодирование ведется в алюминиевой емкости, которая исполняет роль отрицательного электрода. Положительный полюс батареи через реостат, выставленный на максимальное сопротивление, подключают к детали и погружают ее (деталь) в электролит. После этого величину тока доводят до расчетного значения. Процесс анодирования длится около 90 мин. При этом деталь покроется голубовато-серым налетом. По окончании процесса деталь извлекают из ванны и промывают в проточной воде тампоном, смоченным в марганцовке. Покрытие получается ровного серого цвета и, как было сказано выше, хорошо окрашивается.

Для окраски понадобится анилиновый краситель любого цвета. Красящий раствор содержит 15 г красителя и 1 мл уксусной кислоты (на 1 л воды). Раствор подогревают до 60…80°С. Время выдержки зависит от желаемой насыщенности цвета и контролируется визуально (обычно 5-15 мин).

Анодирование алюминия (анодное оксидирование) – это процесс, в результате которого на поверхности металла образуется оксидное покрытие. Основная задача оксидного покрытия – защитить поверхность алюминия от окисления, возникающего из-за взаимодействия этого металла с воздухом. Анодирование призвано не уничтожать пленку, образовавшуюся при окислении (она выполняет защитную функцию), а сделать ее более прочной. В этом отношении анодирование похоже на такой метод, как воронение окислением.

  • Технология анодирования
  • Подготовительный процесс
  • Химическая обработка
  • Закрепление
  • Другие способы анодирования
  • Анодирование в домашних условиях
  • Приготовление раствора
  • Анодирование

Технология анодного оксидирования используется для укрепления не только алюминия и его сплавов, но и других металлов. К примеру, оксидные покрытия используются для защиты титана и магния.

Помимо укрепления поверхностного слоя, анодирование преследует следующие цели:

  • сглаживание различных дефектов поверхности (сколов, царапин и т.п.);
  • повышение адгезивных качеств материала (краска значительно лучше сцепляется с оксидной пленкой, чем с голым металлом);
  • улучшение внешнего вида металла;
  • придание металлу различных декоративных эффектов (к примеру, можно создать имитацию золота, серебра, жемчуга).

Технология анодирования

Процесс анодирования можно разделить на три части:

  • подготовительный процесс;
  • химическую обработку;
  • закрепление.

Подготовительный процесс

На этом этапе алюминиевый профиль подвергается механической и электрохимической обработке. Под механической обработкой понимается очистка металла, его шлифование и обезжиривание. Далее изделие кладут сначала в щелочной раствор для травления, а затем перекладывают в кислотный для осветления. Завершается подготовка промывкой поверхности. Причем промывка осуществляется несколько раз, чтобы полностью удалить кислотные вещества с металла.

Химическая обработка

Химическое оксидирование алюминия представляет собой обработку металла в электролите. В качестве электролитов используются растворы различных кислот (серной, хромовой, щавелевой, сульфосалициловой). Порой в растворы добавляют соль или органическую кислоту.

Наиболее распространенный электролит – серная кислота. И все же этот электролит не применяется для обработки изделий сложной формы, на которых имеются небольшие отверстия или зазоры. В таких случаях предпочтительна хромовая кислота. А вот щавелевая кислота позволяет значительно улучшить разноцветные изоляционные покрытия.

Химическое оксидирование алюминия

Качество процесса зависит от нескольких составляющих, в числе которых концентрация, температурный режим и плотность тока. Высокие температуры способствуют ускорению анодирования. Причем пленка образуется мягкая и высокопористая. Если необходимо твердое покрытие, применяется более низкая температура.

Химическое оксидирование алюминия может осуществляться при температурах от нуля, до плюс 50 градусов по Цельсию. Плотность тока может варьироваться от 1 до 3 Ампер на квадратный дециметр. Показатель электролитной концентрации может находиться в пределах 10-20%.

Закрепление

После оксидирования металл выглядит, как пористая поверхность (даже при использовании холодного режима). Чтобы поверхность была достаточно прочной, эти поры нужно перекрыть. Делается это одним из трех способов:

  • окунанием изделия в горячую пресную воду;
  • обработкой паром;
  • размещением металла в так называемом «холодном растворе».

Обратите внимание! Если изделие будет окрашиваться, процесс закрепления не нужен, поскольку лакокрасочный материал естественным образом заполнит имеющиеся поры.

Существует три разновидности оборудования для оксидирования алюминия:

  • основное (ванны);
  • обслуживающее (обеспечение работы);
  • вспомогательное (подача изделий в ванну, проведение подготовки, складирование и т.п.).

Другие способы анодирования

Помимо классического способа, описанного выше, также может применяться твердое, микродуговое и цветное анодирование. Вкратце об этих способах обработки металла будет рассказано ниже.

Задача твердого анодирования – получить особо прочную микропленку. Методика нашла широкое распространение в авиастроении, автомобилестроении и строительстве. Особенность технологии состоит в том, что задействуются не один, а сразу несколько электролитов. К примеру, в рамках одного процесса могут применяться щавелевая, серная, лимонная, винная и борная кислоты. В ходе анодирования плотность тока постепенно увеличивается, и благодаря структурным изменениям в ячейках пленка приобретает повышенную прочность.

Схема микродугового оксидирования

Микродуговое оксидирование – это электрохимический процесс, в котором поверхность алюминия окисляется, и в это же время между анодом и электролитом происходят электрозарядные явления. Методика позволяет получать особенно качественные покрытия с высоким уровнем износостойкости и адгезии.

Еще один способ анодирования – цветное. Как видно из названия, основная задача процесса – изменить цвет детали.

Существует четыре способа цветного анодирования:

  1. Окрашивание методом адсорбции. Осуществляется путем погружения изделия в электролитную ванну. Также возможно окунание детали в раствор с красящим веществом, разогретым до заданной температуры.
  2. Электролитическое окрашивание (другое название – черное анодирование). Вначале получают бесцветную пленку, а затем окунают металл в кислый солевой раствор. На выходе цвет изделия может разниться от черного, до слабого бронзового оттенка. Черные тона алюминия особенно востребованы в строительной отрасли.
  3. Интерференционное окрашивание. Технология схожа с электролитическим окрашиванием, но за счет создания особого светоотражающего слоя цветовые оттенки получаются гораздо разнообразнее.
  4. Интегральное окрашивание. Технология представляет собой смешивание электролита с органическими солями.

Анодирование в домашних условиях

Самостоятельное анодирование практически всегда осуществляется по холодной методике. Такой же технологии придерживается и большинство компаний, предоставляющих подобные услуги. Холодной методика называется из-за того, что в процессе создания пленки нет нужды в высоких температурах: рабочий диапазон температур колеблется между -10 и +10 градусов по Цельсию.

Достоинства холодного анодирования:

  1. Поверхностный слой получается достаточно толстым благодаря тому, что скорость роста и растворения оксидной пленки с ее наружной и внутренней стороны различаются.
  2. Пленка выходит очень прочной.
  3. Обработанный металл отличается высокой стойкостью к коррозии.

Единственный недостаток методики состоит в сложности дальнейшей окраски металла материалами, основанными на органике. Однако металл, вне зависимости от его характеристик, в любом случае получает окраску естественным образом. Цвет может различаться от оливкового, до черного или сероватого.

Для проведения работ понадобится следующее:

  • ванны (алюминиевые емкости для анодирования, а также пара стеклянных или пластиковых – для изготовления растворов);
  • алюминиевые соединительные провода;
  • источник напряжения на 12 Вольт;
  • реостат;
  • амперметр.

Приготовление раствора

Как уже говорилось выше, основной электролит для анодирования – серная кислота. Однако вне пределов производственного помещения использование такого электролита опасно. Поэтому в домашних условиях обычно используют соду.

  1. Приготавливаем 2 раствора – содовый и соляной. Компоненты засыпаем в емкости с дистиллированной теплой водой в пропорции 1 к 9.
  2. Хорошо перемешиваем раствор и даем ему настояться.
  3. Сливаем раствор в другую емкость таким образом, чтобы туда не попал содовый осадок. От чистоты раствора в значительной степени зависит результат анодирования.

Анодирование

Прежде всего, нужно подготовить деталь. Задача подготовительного процесса — очистить, отшлифовать и обезжирить поверхность перед анодированием. Если на изделии не убрать видимые дефекты, полученная пленка не сможет их скрыть, так как ее толщина не превышает 1/20 миллиметра. Прямо перед анодированием смешиваем оба раствора в одной посуде.

Емкость для анодирования должна быть достаточно объемной, чтобы в нее можно было полностью погрузить деталь. Кроме того, деталь должна быть зафиксирована так, чтобы не касаться дна посуды. Для этого можно использовать стойку или любой другой вариант – на личное усмотрение. Также нужно вдумчиво подойти к вопросу крепления детали, так как после анодирования в местах фиксации останутся следы.

Ток подается, по крайней мере, 30 минут. На необходимость завершать анодирование указывает изменение цвета детали. Когда деталь готова, напряжение отключаем, а металл извлекаем из ванночки.

После изъятия тщательно промываем заготовку. Чтобы результат был качественным, на 15 минут кладем металла в марганцевый раствор. Затем вновь промываем деталь сначала в теплой, а затем в холодной воде. Далее высушиваем металл. Если технология не нарушена, изделие приобретет светло-серую тональность. На качественно проделанную работу указывают равномерный цвет поверхности, отсутствие потеков и пятен.

Завершающая стадия анодирования – закрепление пленки. Необходимо закрыть микроскопические поры, имеющиеся в пленочном покрытии. Для этого кладем металл в емкость с дистиллированной водой и кипятим в течение получаса.

По желанию можно также покрасить или отлакировать металлическую поверхность. Лакокрасочный слой наносится методом погружения.

Итак, анодирование алюминия может осуществляться разными способами. Однако лишь холодная обработка металла содовым и соляным растворами доступны в домашних условиях. Также стоит заметить, что при соблюдении технологических требований вне зависимости от вида раствора отсутствует существенная разница в качестве полученных поверхностей.

Анодирование алюминия в домашних условиях

В защите от ржавчины и коррозии нуждается каждый металл, в том числе и алюминий, который очень часто используется обывателями в домашних условиях. Если создать на поверхности алюминия плотную и толстую окисную пленку, этого будет вполне достаточно для торможения дальнейшей коррозии, что получается в процессе проведения анодирования алюминия. Самые механически прочные и стойкие пленки получаются при низкотемпературном тонкослойном анодировании алюминия, чем вы и будете заниматься.

Вопросы безопасности

Провести качественно анодирование в домашних условиях — несложно. Безопаснее и удобнее заниматься данной работой на улице или балконе. В ходе процесса вас ждет несколько опасных для здоровья моментов.

Кислота является очень едкой штукой. Хотя она и находится в сильно разбавленном виде и вызывает при попадании на кожу всего лишь слабый зуд, но если она попадет в глаза — может спровоцировать серьезнейшие травмы! Потому желательно при анодировании стали работать в защитных очках и под рукой всегда иметь ведро с водой или слабым содовым раствором.

Во время процедуры анодирования совершается выделение на аноде кислорода, а на катоде — водорода. После смешивания этих газов они образуют известный гремучий газ, который, в принципе, является тем же динамитом. Поэтому при анодировании в закрытом помещении можно погибнуть от первой искры.

Подготовительные работы

Помните, что детали после анодирования становятся больше по размерам. Толщина защитного анодного слоя обычно составляет 0,05 миллиметров. К примеру, резьбы, что раньше закручивались впритирку, после процесса анодирования вообще перестанут закручиваться, так как болту в гайке в этом случае станет теснее на 0,2 миллиметра. А шлифовать анодированную практически невозможно.

Полезно отполировать изделия до зеркального блеска на полировочном кругу. Таким образом, сильно выиграет эстетика детали и снизится вероятность при анодировании «прогара9raquo;. К слову сказать, анодный слой не маскирует дефекты поверхности — они будут заметны и на обработанном изделии.

Перед гальваникой алюминий нужно хорошо обезжирить. Не стоит держать металл в горячем едком натрии или калии, как это рекомендуется в заводских технологиях, потому что заметно портится чистота поверхности. Лучше использовать кусок хозяйственного мыла и зубную щетку, ведь вам предстоит работать с мелкими деталями. Сначала промойте изделие в теплой воде, затем в холодной.

Очень эффективно действует стиральный порошок: его нужно растворить в горячей воде в пластиковой емкости. Затем следует высыпать туда изделия и хорошо потрясти посудину. После промывки тщательно высушите детали горячим воздухом. Не переживайте за мелкие следы жира: после обезжиривания изделие в руки брать можно, потому что слой жира с пальцев окисляется кислородом моментально.

Изготовление электролита

Электролитом для анодирования в домашних условиях служит раствор в дистиллированной воде серной кислоты. Можно использовать и обычную воду из крана, но если можете взять дистиллированную – лучше выбрать её, так как в первом случае немного портится равномерность процесса — распределение на поверхности детали плотности тока.

Серную кислоту глупо делать самостоятельно, а вот дистиллированную воду — очень просто! Если на улице нет снега или дождя, то лед в морозильнике найдется всегда. Добыть дистиллированную воду и серную кислоту можно в местном автомагазине запчастей, ведь эти ингредиенты применяются с целью обслуживания аккумуляторов автомобилей.

Однако там продается кислота в разбавленном виде до плотности 1,27 грамм на сантиметр кубический под названием «Электролит для свинцового аккумулятора». Вам нужно этот электролит смешать с дистиллированной водой в пропорции 1:1.

Если вы возьмете стандартную 5-литровую канистру с электролитом и столько же воды, то в результате вы получите 10 литров раствора для анодирования. Этого хватит для мелких деталей, а для крупных стоит удвоить это количество.

Помните, что при смешивании кислоты с водой будет выделяться много тепла. Если налить воду в кислоту, она моментально вскипит, брызгая в лицо! Именно поэтому рекомендуется лить электролит в емкость с водой тонкой струей, постоянно помешивая стеклянной палочкой. И лучше одеть защитные очки! При попадании кислоты на одежду или кожу следует её немедленно смыть струей воды и промыть раствором соды.

Режимы обработки

Температура процесса анодирования металла составляет -10 — +10 градусов Цельсия. Растущий слой ниже -10 вполне хорош, однако не хватит напряжения, которое выдается блоком питания, для поддержания необходимой силы тока. Выше +10 градусов защитная пленка хоть и будет формироваться, но она получится нетвердой и бесцветной.

Однако рекомендуется прекращать процесс анодирования уже при 5 градусах выше нуля. А дело вот в чем, в углу ванны и на поверхности детали наблюдается разная температура, а при анодировании выделяется много энергии в виде тепла.

Но если не обеспечено принудительное перемешивание електролита, нельзя верить термометру! Однако перемешивать электролит стоит постоянно, ложкой, воздухом, насосом, это нужно для выравнивания температуры на поверхности изделия из алюминия. Иначе на детали образуются участки местного перегрева, а затем — пробои и растрав детали.

Анодная плотность тока должна находиться в пределе 1,6 — 4 Ампер на квадратный дециметр. В таких пределах будет нарастать красивый, окрашенный и плотный защитный анодный слой. Лучше всего додерживаться плотности тока от 2 до 2,2 Ампера/дм2. При меньшей силе тока покрытие будет расти медленно нетолстое. При большей силе тока, чем 4 Ампера/дм2 может возникнуть электрический пробой, и изделие будет быстро растравливаться.

Катодная плотность тока должна быть низкой. Чем ниже этот показатель, тем лучше, потому что это обеспечивает равномерный и мягкий режим распределения плотности тока по поверхности обрабатываемой детали, особенно если она большая. Поэтому запомните, что площадь катода из свинца должна быть в два раза больше площади детали (анода).

Процесс анодирования алюминиевого профиля не оговаривает значения напряжения анод-катод. Однако если ваша цепь имеет ненулевое сопротивление, то нужен приличный вольтаж блока питания. Причем желательно, чтобы вы использовали блок питания с несколькими выходными напряжениями. И вот почему.

Защитный слой, который растет на изделии, диэлектрик. По мере его возрастания постоянно растет его электрическое сопротивление. Чтобы поддерживать требуемую плотность тока, на протяжении всего процесса необходимо регулировать несколько раз силу тока при помощи переменного резистора.

Однако напряжения может не хватить, когда анодный слой станет достаточно толстым. В этом случае нужно добавить напряжения. Поэтому блок питания должен обеспечить на выходе хотя бы два напряжения.

Ванна для анодирования

Перед работой необходимо подготовить оборудование для анодирования. Обычно требуется несколько ванн: для обработки маленьких деталей, недлинных и длинных изделий. Они должны быть из алюминия. Подходящим вариантом также является полиэтилен. В качестве маленькой емкости можно использовать пищевой контейнер или длинный цветочный пластиковый горшок.

Дно и стенки пластиковой ванны желательно покрыть листами алюминия. Можно из листа алюминия вырезать выкройку и согнуть импровизированную «емкость9raquo;. Смысл этого заключается в обеспечении равномерной плотности тока со всех сторон изделия.

Ванна должна отличаться хорошей теплоизоляцией корпуса, иначе в противном случае электролит будет в ней нагреваться слишком быстро, и его придется чаще менять. Самым простым решением станет оклейка ванны толстым слоем пенопласта – 2-4 сантиметра. Также можете закрепить ванну внутри коробки и промежуток залить строительной пеной.

После этого следует изготовить для ванны свинцовый катод. Его можно сделать из листового свинца, сняв последний с толстых электрокабелей. Напомним, что площадь катода должна в два раза превышать площадь поверхности обрабатываемого изделия. При этом не учитывается поверхность катода, которая прислонена к стенке. В катодной пластине должны присутствовать отверстия для выхода газа.

Вы можете собрать катод из нескольких кусков свинца, если нет одного. Куски рекомендуется паять мощным паяльником, толстым швом вдоль стыков. Постарайтесь, чтобы катод повторял конфигурацию поверхности детали, обращенной к нему. Вывод из ванны контакта выполните полоской того же материала. Хотя также принято использовать и толстый медный провод в изоляции. Место припайки изолируйте силиконовым герметиком.

Процесс анодирования

Итак, в пластиковую ванну вы залили электролит, на выходе имеется блок питания с током. Для регулирования силы тока к цепи при анодировании титана или алюминия подключите проволочный переменный резистор. В емкости находятся 2 предмета: свинцовый катод в виде пластины и анод – обрабатываемое изделие. При подаче на них тока происходит выделение кислорода и начинает расти анодный защитный слой.

При создании качественного электрического контакта между свинцом и деталью вы будете наблюдать микропузырьки кислорода, что медленно поднимаются со всей поверхности изделия. Их диаметр крайне мал, их течение напоминает струйки дыма. Длительность процесса стоит контролировать визуально — по окрасу детали.

Для мелких деталей она составляет 20-30 минут, для больших изделий — час-полтора.
После того, как деталь полностью покроется налетом серо-голубого цвета, её следует достать из ванной, вымыть под струей холодной воды и протереть ваткой, что смочена в крепком марганцовом растворе, для удаления побочных продуктов реакции. Поверхность должна быть блестящей, светло-серой, гладкой.

После процесса анодирования дома некоторые изделия приобретают темно-матовый оттенок, все зависит от режима анодирования. Для окраски анодированных изделий погрузите их в раствор анилинового красителя, что подогрет до 50—60 градусов по Цельсию. Перед работой раствор профильтруйте, потому что мелкие крупинки нерастворившегося красителя способны образовывать на поверхности металла пятна. Интенсивность окраски обычно составляет не больше 15—20 минут.

После того, как деталь приобрела красивый оттенок и твердый, не рыхлый защитный слой, необходимо его зафиксировать. Дело в том, что это покрытие на микроуровне имеет пористую структуру, которая является проницаемой для воздуха и воды. Такой слой металл хорошо защищает от механических повреждений, но слаб против химического.

Существует несколько методов, которые помогают закрыться микропорам. Самый простой – проварить после анодирования детали в кастрюле в воде в течение полчаса. Лучше использовать дистиллированную воду. Также детали можно подержать на паровой бане, также на протяжении получаса.

Вы уже знаете, что существует несколько технологий анодирования алюминия и деталей из него. Они отличаются условиями рабочего процесса, а если быть конкретнее – то температурой електролита, которая является основным фактором, который влияет на качество анодного защитного слоя. В домашних условиях предпочтительнее выбрать вариант холодного анодирования, ведь в этом случае покрытие получается качестве и толще, а деталь приобретает красивый оттенок и блеск.

> МДО-покрытие – защитное керамическое покрытие

МДО-покрытие – защитное керамическое покрытие.

Термостойкие, электроизоляционные, декоративные, коррозионностойкие и защищающие от фреттинг-коррозии в частности, износостойкие защитные керамические покрытия, а также покрытия, являющиеся подслоем для нанесения полимерных материалов

Описание

Свойства и преимущества МДО-покрытий

Описание:

МДО-покрытие представляет собой керамику сложного состава (защитное керамическое покрытие).

МДО-покрытие – защитное керамическое покрытие, образующееся в процессе микродугового оксидирования за счет окисления поверхности металла, при этом на поверхности металла формируются оксидные и гидроксидные формы этого металла. С другой стороны покрытие растет за счет включения в его состав элементов из электролита. Элементы электролита входят в покрытие в виде солей, оксидов и гидроксидов сложного состава. При необходимости технология МДО позволяет ввести в покрытие любой нужный химический элемент. Чем больше времени производить обработку детали, тем больше элементов из электролита накапливается в поверхностном слое. Нижний слой покрытия, прилегающий к металлу-основе, состоит преимущественно из его оксидных соединений.

Микродуговое оксидирование позволяет получать покрытия различного назначения: термостойкие, электроизоляционные, декоративные, коррозионностойкие и защищающие от фреттинг-коррозии в частности, износостойкие, а также являющиеся подслоем для нанесения полимерных материалов.

Толщина покрытий определяется несколькими основными факторами. Это природа электролита, материал сплава металла, режим обработки и время процесса. МДО позволяет получать покрытий толщиной от долей до сотен микрометров. Необходимая толщина покрытия зависит от назначения и условий эксплуатации. Для нанесения подслоя под окрашивание достаточно 5-10 мкм, для придания электроизоляционных свойств или высокой износостойкости необходимо 50-100 мкм. Декоративные свойства и антикоррозионные свойства в атмосферных условиях обеспечивают 20-40 мкм покрытия.

Свойства и преимущества МДО-покрытий:

– высокая термостойкость. МДО-покрытия имеют повышенную стойкость к термическим и термоциклическим нагрузкам. Покрытия могут без ограничений работать при температурах от -40 до +600 °С. При постепенном нагреве детали термостойкость МДО-покрытия ограничивается температурой плавления металла самой детали, поскольку эти значения для металла заведомо ниже, чем для керамики. Испытания показали, что покрытия могут выдерживать до 280 термоциклов 310 – 15 °С и до 25 термоциклов 500 – 15 °С. При таких испытаниях, образец с покрытием нагревается до заданной температуры в печи и затем бросается в холодную воду.,

– высокая коррозионная стойкость. Метод МДО позволяет получать защитные керамические покрытия, стойкие в атмосферных условиях и в различных коррозионных средах – химически агрессивных растворах, парах, морской воде и пр. Так как МДО покрытие представляет собой керамику сложного состава, то коррозионная стойкость материала покрытия достаточно велика. Защиту от коррозии металла-основы можно обеспечить толщиной покрытия и регулированием количества и строения пор. Дополнительную защиту придает пропитка пор инертным материалом (чаще всего фторопластом). Проведенные испытания алюминиевых образцов с полимерно-керамическим МДО-покрытием показали, что полученные покрытия могут эксплуатироваться как коррозионностойкие в течение 15 лет,

– диэлектрические свойства. Напряжение, при котором происходит пробой покрытия, как и коррозионная стойкость, зависит от толщины покрытия, типа и размеров пор. Также эта величина может быть существенно увеличена применением материала, заполняющего поры. Среднее напряжение пробоя покрытия – 600 В. Напряжение пробоя покрытия с наполнением пор – до 2500 В,

– высокая адгезия. МДО-покрытия имеют превосходное сцепление с металлом-основой, которое обеспечивается наличием переходного слоя на границе металл покрытие. Переходный слой формируется как внутрь металла, так и наружу, а также имеет профиль с множеством изгибов. В результате, сцепление покрытия с металлом оказывается больше прочности самого покрытия и при нагружении не происходит отрыва покрытия по границе раздела металл-покрытие. Рассчитанные по результатам Scrach-тестирования значения адгезии достигают 350 Мпа,

– светоотражение и светопоглощение. Отражательная способность МДО-покрытий достигает 80 %. Для черных МДО-покрытий коэффициент поглощения достигает 90 %. Для получения наиболее высоких оптических характеристик применяются сплавы с минимальным содержанием примесей,

– высокая твердость. Твердость МДО-покрытий достигает 21 ГПа.

Свойства МДО-покрытий

Состав

МДО-покрытия представляют собой керамику сложного состава. Покрытие при микродуговом оксидировании образуется за счет окисления поверхности металла, при этом формируются оксидные и гидроксидные формы этого металла. С другой стороны покрытие растет за счет включения в его состав элементов из электролита. Элементы электролита входят в покрытие в виде солей, оксидов и гидроксидов сложного состава. При необходимости технология МДО позволяет ввести в покрытие любой нужный химический элемент. Чем больше времени производить обработку детали, тем больше элементов из электролита накапливается в поверхностном слое. Нижний слой покрытия, прилегающий к металлу-основе, состоит преимущественно из его оксидных соединений.


График изменения содержания алюминия и фосфора на поверхности МДО-покрытия от времени обработки в фосфатном электролите

Толщина

Толщина покрытий определяется несколькими основными факторами. Это природа электролита, материал сплава металла, режим обработки и время процесса. МДО позволяет получать покрытий толщиной от долей до сотен микрометров. Необходимая толщина покрытия зависит от назначения и условий эксплуатации. Для нанесения подслоя под окрашивание достаточно 5-10 мкм, для придания электроизоляционных свойств или высокой износостойкости необходимо 50-100 мкм. Декоративные свойства и антикоррозионные свойства в атмосферных условиях обеспечивают 20-40 мкм покрытия.

Пористость

Пористость покрытий варьируется в интервале 5-50 %, размеры от 0,01 до 10 мкм. Строение пор при толщине покрытия более 5-10 микрон сложное, разветвленное с множеством ответвлений и замкнутых пространств. Покрытия не содержащие пор получить невозможно, что обусловлено природой процесса. При необходимости пористость может быть понижена с помощью пропитки различными материалами либо с помощью нанесения слоя полимера (красителя). Наиболее часто применяется пропитка фторопластами и нанесение полимерных порошковых красок. В ряде случаев пористость является положительным фактором. При работе покрытия на износ в условиях смазки, последняя входит в поры покрытия и обеспечивает постепенное поступление в зону трения. В медицине биоактивные МДО-покрытия могут содержать в порах лекарственные препараты.

Микрофотографии поверхности МДО-покрытий

Износостойкость

Покрытия используются как износостойкие в различных узлах и агрегатах машин и механизмов. За счет этого во многих случаях удается применять изделия из алюминия — металла достаточно мягкого и сложного для традиционных методов поверхностной обработки (к примеру, гальваники). Проводились сравнительные испытания образцов с МДО-покрытием на алюминии и стального образца с нанесенным износостойким слоем хрома. Удельная нагрузка при испытаниях составляла 0.64 Н/мм2. МДО-покрытия показали меньший износ, особенно при повышенных температурах.


Исследование износостойкости методом шар-диск

Термостойкость

МДО-покрытия имеют повышенную стойкость к термическим и термоциклическим нагрузкам. Покрытия могут без ограничений работать при температурах от -40 до +60В°С. При постепенном нагреве детали термостойкость МДО-покрытия ограничивается температурой плавления металла самой детали, поскольку эти значения для металла заведомо ниже, чем для керамики. Испытания показали, что покрытия могут выдерживать до 280 термоциклов 310-15В°С и до 25 термоциклов 500-15В°С. При таких испытаниях, образец с покрытием нагревается до заданной температуры в печи и затем бросается в холодную воду.

Шероховатость

В процессе обработки шероховатость поверхности повышается с течением времени. Можно получить покрытия с шероховатостью до 8 класса. Шероховатость зависит от материала сплава, состояния его поверхности и режима обработки.


3D-профилометрия МДО-покрытия

Коррозионная стойкость

Метод МДО позволяет получать покрытия, стойкие в атмосферных условиях и в различных коррозионных средах — химически агрессивных растворах, парах, морской воде и пр. Так как МДО покрытие представляет собой керамику сложного состава, то коррозионная стойкость материала покрытия достаточно велика. Защиту от коррозии металла-основы можно обеспечить толщиной покрытия и регулированием количества и строения пор. Дополнительную защиту придает пропитка пор инертным материалом (чаще всего фторопластом). НПЦ Полюс (г.Томск) в 2003 году проведены ускоренные испытания по стандартным методикам алюминиевых образцов с полимерно-керамическим МДО-покрытием. Испытания (ГОСТ В 20.57.304-76, ГОСТ РВ 20.57.304-88) показали, что полученные покрытия могут эксплуатироваться как коррозионностойкие в течение 15 лет.

Диэлектрические свойства

Напряжение, при котором происходит пробой покрытия, как и коррозионная стойкость, зависит от толщины покрытия, типа и размеров пор. Также эта величина может быть существенно увеличена применением материала, заполняющего поры. Среднее напряжение пробоя покрытия — 600 В. Напряжение пробоя покрытия с наполнением пор — до 2500 В.

Адгезия

МДО-покрытия имеют превосходное сцепление с металлом-основой, которое обеспечивается наличием переходного слоя на границе металл покрытие. Переходный слой формируется как внутрь металла, так и наружу, а также имеет профиль с множеством изгибов.


Микрофотография шлифа МДО-покрытия

В результате, сцепление покрытия с металлом оказывается больше прочности самого покрытия и при нагружении не происходит отрыва покрытия по границе раздела металл-покрытие. Рассчитанные по результатам Scrach-тестирования значения адгезии достигают 350 МПа.

Светоотражение и светопоглощение

Отражательная способность МДО-покрытий достигает 80 %

Для черных МДО-покрытия коэффициент поглощения достигает 90 %.

Для получения наиболее высоких оптических характеристик применяются сплавы с минимальным содержанием примесей.


Фото черного и белого покрытия

Твердость

Твердость МДО-покрытий достигает 21 ГПа.

Измерения производились при помощи прибора Nano Hardness Tester, при нагрузке на индентор — 200 мН. Твердость покрытий рассчитывается, исходя из глубины проникновения индентора.


Отпечаток индентора при исследовании микротвердости

Pereosnastka.ru

Металлические, металлокерамические и керамические покрытия
Категория: Покрытия литейных форм
Металлические, металлокерамические и керамические покрытия

Далее: Оксидные покрытия

Металлические покрытия наносят непосредственно на очищенную поверхность кокиля с целью защиты его от газовой коррозии. Металлические покрытия получают методами термодиффузионной металлизации или напылением при высокой температуре. По методу термодиффузиоиной металлизации поверхность кокиля насыщают коррозиестойкими элементами, преимущественно хромом, применяя порошковую, газовую или жидкую диффузионную металлизацию.

Термодиффузионное хромовое покрытие можно применять в сочетании с жидкими, металлокерамическими и керамическими покрытиями. Сущность нанесения металлического покрытия напылением состоит в том, что напыляемый материал расплавляют в специальных аппаратах и распыляют на поверхность кокиля сжатым газом. Металлические покрытия применяют для получения так называемого подслоя при использовании металлокерамических и керамических покрытий. Они защищают материал кокиля от газовой коррозии и одновременно улучшают сцепление основного покрытия с поверхностью кокиля. Материал для напыления подслоя применяют в виде проволоки или порошка.

Металлокерамические покрытия, представляющие собой смесь металлических и керамических порошков,

которую напыляют на кокиль или на металлический подслой, применяют в качестве теплоизолирующих покрытий высокой стойкости.

Керамические покрытия — порошки тугоплавких окислов, нитридов, карбидов и других соединений, напыляемые на кокиль или на металлический подслой. Ввиду высокой температуры плавления керамические покрытия наносят преимущественно плазменными горелками. Для получения плазмы между электродами 1 и 2 создают сильную электрическую дугу и в нее

под высоким давлением подают инертный газ. В электрической дуге молекулы газа сильно ионизируются и приобретают высокую скорость и температуру. В ионизированный поток газа (плазму) вводят мелкозернистый порошок защитного покрытия.

Большое количество тепловой энергии, поглощенной газом в процессе ионизации, освобождается при выходе струи плазмы из сопла горелки, где происходит обратный процесс превращения частиц газа с противоположными зарядами в нейтральные атомы. Этот процесс сопровождается повышением температуры пламени до 5000—20 000° С. Огнеупорный порошок в потоке плазмы оплавляется (или расплавляется) и с большой скоростью вылетает из сопла горелки. Если на пути этого потока 3 поставить препятствие 4, например металлический предмет, то оплавленные частицы будут осаждаться на нем и образовывать прочное покрытие.

При помощи плазменных горелок можно наносить защитные покрытия из всех, даже самых тугоплавких металлических и керамических материалов. Для газопламенных и плазменных покрытий в литейном производстве применяют окись алюминия и двуокись циркония Zr02.

Высокая температура плавления и химическая устойчивость окиси циркония соответствуют требованиям, предъявляемым к материалу кокильных покрытий. Однако практическое применение окисла встречает затруднения из-за полиморфных превращений, происходящих в кристаллической структуре при высоких температурах, связанных с изменением объема.

Уменьшению сжатия при нагреве и расширению при охлаждении двуокиси циркония способствуют добавки окислов натрия, кальция, магния и других металлов.

Технология нанесения покрытий. Подготовка поверхности кокиля. Необходимым условием хорошей сцепляе-мости газопламенного и плазменного покрытий является качественная подготовка поверхности кокиля. Для получения такой поверхности с нее удаляют загрязнения, применяя известные средства обезжиривания, затем делают шероховатой путем травления или струйной обработкой (песком, корундом). Струйная обработка активизирует поверхность кокиля, благодаря чему частицы покрытия с ней лучше сцепляются. После струйной обработки кокиля надлежит немедленно приступить к напылению защитного покрытия.

Рис. 1. Принципиальная схема плазменного напыления

Нанесение плазменных покрытий. В зависимости от режима работы горелки и зернового состава порошка частицы напыляемого материала могут расплавляться или только оплавляться в поверхности. Вылетая с большой скоростью из горелки и встречая на своем пути обрабатываемую поверхность, частицы ударяются о нее, разбрызгиваются и расплющиваются. В результате деформации нагретых частиц напыленный слой имеет чешуйчатое строение. Прочность покрытия зависит от расхода газа при напылении и зернистости порошка. Увеличенный расход газа вызывает повышение скорости полета частиц, тогда как температура пламени остается неизменной. С уменьшением продолжительности пребывания частиц порошка в струе плазмы уменьшается их прогрев, что снижает прочность нанесенного слоя. Крупные порошки, даже при нормальном расходе газа, могут не расплавляться в плазменной струе и отскакивать от напыляемой поверхности.

Очень важно при напылении соблюдать оптимальное расстояние горелки от обрабатываемой поверхности. Это расстояние зависит от характеристики горелки и устанавливается опытным путем. Обычно оно составляет 200—250 мм. Напыление с увеличенного расстояния приводит к охлаждению потока, падению скорости полета частиц и прочности наносимого слоя. При очень близком расположении горелки покрытие и обрабатываемая поверхность могут сильно перегреться, и при значительной разности в тепло-физических свойствах покрытия и материала кокиля в напыленном слое возникнут большие внутренние напряжения, снижающие его стойкость.

Толщина напыляемого покрытия зависит от скорости перемещения горелки. При ручном напылении плазменной горелкой толщина покрытия составляет около 50 мкм при толщине слоя порядка 150 мкм и около 100 мкм при толщине слоя 300 мкм. Эти данные субъективны и зависят от опыта исполнителя и тщательности выполнения работы. Снизить отклонения в толщине покрытий можно при механическом перемещении горелки. Однако при сложной конфигурации кокилей механизация напыления в большинстве случаев невозможна. Практически при тщательном ручном напылении неизбежно колебание толщины покрытия на 30—50%.

После опескоструивания кокиля вначале наносят металлизацией металлический подслой или метэллокерамический слой толщиной не более 0,1 мм. Немедленно после нанесения подслоя напыляют плазменное защитное покрытие толщиной около 0,2 мм и герметизируют его раствором жидкого стекла. Последнее закупоривает поры плазменного покрытия и закрывает доступ газам к поверхности кокиля, чем предотвращает окисление металла под защитным слоем. После этой операции кокиль просушивают до удаления влаги и вводят в эксплуатацию. Во время работы рекомендуют на защитный слой после каждой заливки наносить ацетиленовую копоть, а через 200—500 заливок повторять герметизацию покрытия раствором жидкого стекла.

Свойства газопламенных и плазменных покрытий. Сведения о свойствах кокильных покрытий, напыляемых при высоких температурах, ограничены. Результаты исследований газопламенных и плазменных покрытий металлических форм опубликованы в работах А. М. Петриченко, Г. Н. Тулузова, а также Краковского института литейного производства. Основные же работы по высокотемпературным покрытиям различных деталей машин опубликованы в литературе по сварке и керамическому производству.

Шероховатость покрытий. Как показывает опыт, шероховатость напыленных покрытий зависит от режима работы горелки, зернистости порошка и расстояния горелки от напыляемой поверхности. Если в результате нарушения одного или нескольких перечисленных факторов зерна напыляемого порошка достигают обрабатываемой поверхности нерасплавленными, то покрытие получается шероховатым и грубым.

При нормальных режимах напыления порошками из А1а03 или Zr02 можно получать покрытия с поверхностью на уровне 4—5-го классов шероховатости. По данным Краковского института литейного производства, покрытия из электрокорунда дают более чистую поверхность при более грубом зерне порошка (фракция 150) вследствие лучших условий плавления порошка в горелке: расплавленные крупные зерна порошка дольше находятся в жидком состоянии и после удара о напыляемую поверхность сильно деформируются.

Металлокерамические покрытия дают более высокую чистоту поверхности по сравнению с чисто керамическими, выполненными из порошка той же зернистости. Объясняется это, по-видимому, заполнением пор и неровностей между зернами керамики расплавленным металлом.

Сцепление покрытий в холодномсостоянии. Сцепление напыленных покрытий с поверхностью кокиля достигается при совместном использовании механических и химических сил связи. Для использования механических сил связи, как было сказано выше, обрабатываемой поверхности придают шероховатость абразивной обработкой или травлением. Повышение прочности за счет химических сил связи достигается опытным подбором покрываемого и напыляемого’материалов, природа которых обеспечивает высокую прочность сцепления напыленного слоя с кокилем. На прочность сцепления сильное влияние оказывает соответствие коэффициентов линейного расширения материала кокиля и напыленного слоя. При значительной разности этих величин наблюдается скалывание покрытия при циклических нагревах.

Прямое определение прочности сцепления покрытия с металлической поверхностью выполняют, отрывая напыленный слой от подложки на испытательной машине.

Обстоятельные исследования прочности сцепления плазменных покрытий с различными материалами при комнатных температурах изложены в работе. Полная гамма покрытий испытана только на чугунных образцах как наиболее распространенном материале для изготовления кокилей. Несмотря на значительные колебания полученных данных, можно установить некоторые зависимости. Наиболее низкие показатели сцепления покрытий обнаружены при напылении металлургической окисью алюминия. Добавка к ней металлических порошков повышает сцепляемость почти в 3 раза. Применение молибденового подслоя тоже улучшает сцепление окиси алюминия. Наибольшую прочность сцепления дает окись алюминия в виде корунда. Обнаружено, что при толщине корундового покрытия 250—265 мкм и связанном с его нанесением перегреве образцов наступает значительное понижение прочности сцепления по сравнению с покрытием толщиной 110—135 мкм. На металлических плоскостях в местах отрыва покрытий большой толщины обнаруживается голубой налет, подтверждающий перегрев образцов при напылении.

Высокие прочности сцепления (57,81—95,00 кгс/см2) получены при напылении корунда на подслой, нанесенный металлизацией. Прочность адгезии покрытий одного, и того же состава, нанесенных на стальные образцы, ниже, чем на чугунные. Некоторое понижение прочности сцепления покрытий по сравнению с нанесенными на чугунные подложки обнаружено на образцах из алюминиевого сплава (6,38—32,3 кгс/см2).

Теплофизические свойства. Ценные сведения о те-плофизических свойствах плазменных и газопламенных покрытий приведены в работе Л. Н. Усова и Л. И. Борисенко. Из табл. 55 видно, что коэффициенты теплового расширения и теплопроводности с повышением температуры увеличиваются.

Плотность плазменных покрытий больше, чем газопламенных, поэтому коэффициенты теплового расширения и теплопроводности покрытий из окиси алюминия при плазменном напылении выше. Общая пористость плазменных покрытий меньше, чем газопламенных, поэтому они лучше защищают кокили от газовой коррозии, чем газопламенные.

Сопоставив коэффициенты теплопроводности газопламенных и плазменных покрытий, состоящих из окислов металлов и типовых кокильных красок, можно заключить, что термоизолирующие свойства газопламенных и плазменных покрытий не уступают обычным водным кокильным краскам при несравненно более высоких прочности адгезии и долговечности.

Долговечность покрытий. Высокая огнеупорность и прочность керамических покрытия предопределяют их повышенную долговечность при термоциклических нагрузках. Исследования долговечности газопламенных кокильных покрытий были проведены А. М. Петриченко и Г. Н. Тулузовым. Исследованиям подвергали керамические покрытия на основе Zr02 и А1203 с подслоем из нихрома и без него, выполненные порошковым и стержневым газопламенным напылением.

Установлено, что долговечность покрытия зависит от его толщины. Увеличение толщины покрытия из окиси алюминия с 0,2 до 0,8 мм вызывает снижение его долговечности в 2 раза. Долговечность покрытий с подслоем нихрома в 2—2,5 раза больше, чем без подслоя.

Покрытия из Zr02 с подслоем нихрома более долговечны, чем из А1203 с тем же подслоем. Так, покрытие из Zr02 толщиной 0,4 мм выдержало без разрушения 280 термоциклов, тогда как покрытие из А1203 такой же толщины — только 170. Это объясняется тем, что покрытия из А1203 по сравнению с Zr02 обладают большей теплопроводностью. При одинаковой толщине покрытий температура рабочей поверхности кокиля под покрытием из А1203 на 200—250° С выше, чем под покрытием из Zr02. Вследствие более высокой температуры форма получит большее удлинение под покрытием из окиси алюминия и вызовет в нем повышенные растягивающие усилия, разрушение по трещинам и скалыванию.

Производственные испытания плазменных покрытий показали высокую стойкость, превышающую 2000 заливок без возобновления защитного слоя, и более длительное сохранение структуры материала кокилей.

Производственные испытания кокилей с плазменным напылением окисью алюминия проведены на Таллинском заводе «Вольта», выпускающем чугунные кокильные отливки электродвигателей. Согласно технологии, разработанной в НИИСЛе, вначале рабочую поверхность кокилей подвергали струйной обработке металлическим песком, а затем на очищенную поверхность кокиля наносили электрометаллизатором подслой стали 12Х18Н10Т толщиной 0,05 мм. На подслой напыляли на плазменной установке УМП-6-68 слой окиси алюминия. В процессе эксплуатации рабочие поверхности кокилей окрашивали через каждые 200— 250 заливок сажевой краской на жидком стекле и через каждые 3 4 заливки покрывали ацетиленовой копотью. Эксплуатировавшиеся по данному режиму стальные и чугунные кокили снимали через каждые 2000—2500 заливок для струйной обработки, исследования поверхности и повторного напыления. На поверхности очищенных кокилей трещины и разгар отсутствовали. Кокили повторно металлизировали и покрывали слоем окиси алюминия.

На предприятиях ПНР производственные испытания проводили на кокилях для литья канализационных патрубков, дисков, цильбепсов, колосников и других мелких отливок. В качестве покрытий применяли корунд и металлокерамические смеси. Перед заливкой на плазменные покрытия предварительно наносили ацетиленовую копоть или обычные водные краски, содержащие жидкое стекло. Кокили выдерживали до разрушения более 12 000 отливок.

Металлографические исследования материала кокилей, бывших в эксплуатации с применением обычных красок и плазменных покрытий, показали существенные различия в структуре чугуна. В чугунных кокилях, работавших с покрытиями из водных красок, после 1000 заливок обнаружены направленные внутрь поверхностные трещины, образовавшиеся в местах залегания окислившихся включений графита, в то время как в кокилях, эксплуатировавшихся с плазменными покрытиями, были только местные повреждения керамического покрытия без нарушения материала формы.

Кроме того, в результате нагрева поверхности до более высоких температур в материале кокилей, работавших с обычными покрытиями, после 1500 заливок обнаружен распад перлитной основы и графитизация чугуна с образованием больших ферритных полей, тогда как в материале кокилей с плазменными керамическими покрытиями структура чугуна даже после 3000 заливок почти не изменилась.

Реклама:

Читать далее:

Оксидные покрытия

Когда только появились первые металлические орудия труда, выяснилось, что, твердые и прочные, они сплошь и рядом портились под воздействием влаги. Шло время, люди создавали механизмы и машины, и чем более совершенными они становились, тем в более тяжелых условиях приходилось работать их металлическим деталям. Вибрации и знакопеременные нагрузки, огромные температуры, радиоактивное облучение, агрессивные химические среды — вот далеко не полный перечень «испытаний», которым они подвергаются. Cо временем люди научились защищать металл от коррозии, износа и других явлений, которые сокращают срок службы деталей. По сути, есть два подхода к обеспечению такой защиты: либо в основной металл добавляют легирующие элементы, которые придают сплаву искомые свойства, либо на поверхность наносят защитное покрытие. Условия работы деталей машин диктуют свойства, которыми должны обладать покрытия. Технологии их нанесения разнообразны: есть распространенные и относительно несложные, есть очень тонкие, позволяющие создавать покрытия с уникальными свойствами. А неугомонные инженеры продолжают изобретать все новые покрытия и придумывать способы их получения. Судьба этих изобретений может стать счастливой, если покрытие намного превосходит своих предшественников по полезным свойствам или если технология дает существенный экономический эффект. В разработке физиков из Обнинска соединились оба этих условия.

Летящие с огромной скоростью частицы металла при соударении с подложкой привариваются к ней, а частицы керамики уплотняют покрытие (а); на шлифе слоя металла видны застрявшие керамические частицы (б). Схема (вверху) и общий вид (внизу) аппарата для напыления металлических покрытий. С помощью аппарата можно наносить покрытия в любых помещениях и даже в полевых условиях. За критическим сечением сопла возникает зона отрицательного давления, и сюда засасывается порошок. Благодаря этому явлению удалось упростить конструкцию питателя. Дефекты в корпусных деталях (слева) и результат напыления (справа): а — трещина в автоматической коробке передач; б — каверна в головке блока цилиндра. Покрытыми слоем меди или алюминия инструментами можно работать в пожароопасных помещениях: при ударе о металлические предметы они не дают искры. ‹

ТЕМПЕРАТУРА ПЛЮС СКОРОСТЬ

Из способов металлизации поверхностей в современной технике чаще всего пользуются гальваническим нанесением и погружением в расплав. Реже используют вакуумное напыление, осаждение из паровой фазы и пр. Ближе всего к разработке обнинских физиков находится газотермическая металлизация, когда наносимый металл плавят, распыляют на мельчайшие капли и струей газа переносят их на подложку.

Металл плавят газовыми горелками, электрической дугой, низкотемпературной плазмой, индукторами и даже взрывчатыми веществами. Соответственно методы металлизации называют газопламенным напылением, электродуговой и высокочастотной металлизацией, плазменным и детонационно-газовым напылением.

В процессе газопламенного напыления металлический пруток, проволоку или порошок плавят и распыляют в пламени горелки, работающей на смеси кислорода с горючим газом. При электродуговой металлизации материал плавится электрической дугой. В обоих случаях капельки металла перемещаются к напыляемой подложке потоком воздуха. При плазменном напылении для нагрева и распыления материала используется струя плазмы, формируемая плазматронами разных конструкций. Детонационно-газовое напыление происходит в результате взрыва, разгоняющего металлические частицы до огромных скоростей.

Во всех случаях частицы напыляемого материала получают два вида энергии: тепловую — от источника нагрева и кинетическую — от газового потока. Оба этих вида энергии участвуют в формировании покрытия и определяют его свойства и структуру. Кинетическая энергия частиц (за исключением детонационно-газового метода) невелика по сравнению с тепловой, и характер их соединения с подложкой и между собой определяется термическими процессами: плавлением, кристаллизацией, диффузией, фазовыми превращениями и т.д. Покрытия обычно характеризуются хорошей прочностью сцепления с подложкой (адгезией) и, к сожалению, низкой однородностью, поскольку велик разброс параметров по сечению потока газа.

Покрытиям, которые создают газотермическими методами, присущ ряд недостатков. К ним относятся, прежде всего, высокая пористость, если, разумеется, не стоит цель специально сделать покрытие пористым, как в некоторых деталях радиоламп. Кроме того, из-за быстрого охлаждения металла на поверхности подложки в покрытии возникают высокие внутренние напряжения. Обрабатываемая деталь неизбежно нагревается, и если она имеет сложную форму, то ее может «повести». Наконец, использование горючих газов и высокие температуры в рабочей зоне усложняют меры по обеспечению безопасности персонала.

Несколько особняком стоит детонационно- газовый метод. При взрыве скорость частиц достигает 1000-2000 м/с. Поэтому основным фактором, определяющим качество покрытия, становится их кинетическая энергия. Покрытия отличаются высокой адгезией и низкой пористостью, но взрывными процессами крайне сложно управлять, и стабильность результато в гарантиро вать практически невозможно.

СКОРОСТЬ ПЛЮС ТЕМПЕРАТУРА

Желание создать более совершенную технологию возникло давно. Перед инженерами стояла цель — сохранить достоинства традиционных технологий и избавиться от их недостатков. Направление поиска было более или менее очевидно: во-первых, покрытия должны формироваться в основном за счет кинетической энергии частиц металла (нельзя допускать плавления частиц: это предотвратит разогрев детали и окисление подложки и частиц покрытия), и, во-вторых, частицы должны приобретать высокую скорость не за счет энергии взрыва, как в детонационно-газовом методе, а в струе сжатого газа. Такой метод назвали газодинамическим.

Первые расчеты и эксперименты показали, что создавать таким способом покрытия, обладающие вполне удовлетворительными характеристиками, можно, если использовать в качестве рабочего газа гелий. Такой выбор объяснялся тем, что скорость потока газа в сверхзвуковом соплепропорциональна скорости звука в соответствующем газе. В легких газах (водород из-за своей взрывоопасности не рассматривался) скорость звука гораздо выше, чем в азоте или воздухе. Именно гелий ускорял бы металлические частицы до высоких скоростей, сообщая им кинетическую энергию, достаточную для закрепления на мишени. Считалось, что использование более тяжелых газов, в том числе воздуха, обречено на неудачу.

Работа опытных напылительных установок дала неплохой результат: разогнавшиеся в струе гелия частицы из большинства промышленно применяемых металлов хорошо прилипали к подложке, образуя плотные покрытия.

Но полного удовлетворения инженеры не испытывали. Было понятно, что оборудование на легких газах неизбежно будет дорогим и сможет применяться лишь на предприятиях, выпускающих продукцию высоких технологий (только там есть магистрали со сжатым гелием). А магистрали со сжатым воздухом имеются практически в каждом цеху, на каждом предприятии автосервиса, в ремонтных мастерских.

Многочисленные эксперименты со сжатым воздухом вроде бы подтверждали худшие ожидания разработчиков. Однако интенсивный поиск все же позволил найти решение. Покрытия удовлетворительного качества получились, когда сжатый воздух в камере перед соплом нагрели, а в металлический порошок стали добавлять мелкодисперсную керамику или порошок твердого металла.

Дело в том, что при нагревании давление воздуха в камере в соответствии с законом Шарля повышается, а следовательно, повышается и скорость истечения из сопла. Частицы металла, набравшие в струе газа огромную скорость, при ударе о подложку размягчаются и привариваются к ней. Частицы керамики играют роль микроскопических кувалд — они передают свою кинетическую энергию нижележащим слоям, уплотняют их, снижая пористость покрытия.

Некоторые керамические частицы застревают в покрытии, другие отскакивают от него. Правда, таким способом получают покрытия только из относительно пластичных металлов — меди, алюминия, цинка, никеля и др. Впоследствии деталь можно подвергать всем известным способам механической обработки: сверлить, фрезеровать, точить, шлифовать, полировать.

ГЛАВНОЕ УСЛОВИЕ — ПРОСТОТА И НАДЕЖНОСТЬ

Старания технологов останутся втуне, если конструкторы не смогут создать простое, надежное и экономичное оборудование, в котором был бы реализован придуманный технологами процесс. Основой аппарата для напыления металлических порошков стали сверхзвуковое сопло и малогабаритный электрический нагреватель сжатого воздуха, способный доводить температуру потока до 500-600oС.

Использование в качестве рабочего газа обычного воздуха позволило попутно решить еще одну проблему, которая стояла перед разработчиками систем на легких газах. Речь идет о введении напыляемого порошка в газовую струю. Чтобы сохранить герметичность, питатели приходилось устанавливать до критического сечения сопла, то есть порошок необходимо было подавать в область высокого давления. Чисто технические трудности усугублялись тем, что, проходя через критическое сечение, металлические частицы вызывали износ сопла, ухудшали его аэродинамические характеристики, не позволяли стабилизировать режимы нанесения покрытий. В конструкции аппарата с воздушной струей инженеры применили принцип пульверизатора, известный каждому еще из школьных опытов по физике. Когда газ проходит по каналу переменного сечения, то в узком месте его скорость увеличивается, а статическое давление падает и может даже быть ниже атмосферного. Канал, по которому порошок поступал из питателя, расположили как раз в таком месте, и порошок перемещался в сопло за счет подсоса воздуха.

В результате на свет появился переносной аппарат для нанесения металлических покрытий. Он имеет ряд достоинств, которые делают его очень полезным в различных отраслях промышленности:

для работы аппарата нужны всего лишь электросеть и воздушная магистраль или компрессор, обеспечивающий давление сжатого воздуха 5-6 атм и подачу 0,5 м3/мин;

при нанесении покрытий температура подложки не превышает 150оС;

покрытия обладают высокой адгезией (40-100 Н/мм2) и низкой пористостью (1-3%);

оборудование не выделяет вредных веществ и излучений;

габариты устройства позволяют использовать его не только в цеху, но и в полевых условиях;

можно напылять покрытия практически любой толщины.

В состав установки входят собственно напылитель массой 1,3 кг, который оператор держит в руке или закрепляет в манипуляторе, нагреватель воздуха, порошковые питатели, блок контроля и управления работой напылителя и питателя. Все это смонтировано на стойке.

Пришлось потрудиться и над созданием расходных материалов. Выпускаемые промышленностью порошки имеют слишком большие размеры частиц (порядка 100 мкм). Разработана технология, которая позволяет получать порошки с зернами размером 20-50 мкм.

ОТ КОСМИЧЕСКИХ АППАРАТОВ ДО СЕЯЛОК

Новый способ напыления металлических покрытий может применяться в самых различных отраслях промышленности. Особенно эффективен он при ремонтных работах, когда необходимо восстановить участки изделий, например, заделать трещину или раковину. Благодаря невысоким температурам процесса легко восстанавливать тонкостенные изделия, отремонтировать которые другим способом, например наплавкой, невозможно.

Поскольку зона напыления имеет четкие границы, напыляемый металл не попадает на бездефектные участки, а это очень важно при ремонте деталей сложной формы, например корпусов коробок передач, блоков цилиндров двигателей и др.

Устройства для напыления уже применяют в авиакосмической и электротехнической промышленности, на объектах атомной энергетики и в сельском хозяйстве, на авторемонтных предприятиях и в литейном производстве.

Метод может оказаться весьма полезным во многих случаях. Вот лишь некоторые из них.

Восстановление изношенных или поврежденных участков поверхностей. С помощью напыления восстанавливают поврежденные в процессе эксплуатации детали редукторов, насосов, компрессоров, форм для литья по выплавляемым моделям, пресс-форм для изготовления пластиковой упаковки. Новый метод стал большим подспорьем для работников авторемонтных предприятий. Теперь буквально «на коленках» они заделывают трещины в блоках цилиндров, глушителях и пр. Без особых проблем устраняют дефекты (каверны, свищи) в алюминиевом литье.

Устранение течей. Низкая газопроницаемость покрытий позволяет ликвидировать течи в трубопроводах и сосудах, когда нельзя использовать герметизирующие компаунды. Технология пригодна для ремонта емкостей, работающих под давлением или при высоких и низких температурах: теплообменников, радиаторов автомобилей, кондиционеров.

Нанесение электропроводящих покрытий. Напылением удается наносить медные и алюминиевые пленки на металлическую или керамическую поверхность. В частности, метод экономически более эффективен, чем традиционные способы, при меднении токоведущих шин, цинковании контактных площадок на элементах заземления и т. п.

Антикоррозионная защита. Пленки из алюминия и цинка защищают поверхности от коррозии лучше, чем лакокрасочные и многие другие металлические покрытия. Невысокая производительность установки не позволяет обрабатывать большие поверхности, а вот защищать такие уязвимые элементы, как сварные швы, очень удобно. С помощью напыления цинка или алюминия удается приостановить коррозию в местах появления «жучков» на крашеных поверхностях кузовов автомобилей.

Восстановление подшипников скольжения. В подшипниках скольжения обычно применяют баббитовые вкладыши. С течением времени они изнашиваются, зазор между валом и втулкой увеличивается и слой смазки нарушается. Традиционная технология ремонта требует либо замены вкладыша, либо заварки дефектов. А напыление позволяет восстановить вкладыши. В этом случае для уплотнения слоя напыляемого металла керамику применять нельзя. Твердые включения через считанные минуты после начала работы выведут подшипник из строя, причем поврежденными окажутся поверхности и втулки и вала. Пришлось применить сопло особой конструкции. Оно позволяет наносить покрытие из чистого баббита в так называемом термокинетическом режиме. Частицы порошка сразу за критическим сечением сопла разгоняются сверхзвуковым потоком воздуха, затем скорость потока резко снижается до околозвуковой. В результате резко возрастает температура, и частицы нагреваются почти до температуры плавления. При попадании на поверхность они деформируются, частично плавятся и хорошо прилипают к ниже лежащему слою.

СПЕЦИАЛИСТУ — НА ЗАМЕТКУ
Литература

Каширин А. И., Клюев О. Ф., Буздыгар Т. В. Устройство для газодинамического нанесения покрытий из порошковых материалов. Патент РФ на изобретение № 2100474. 1996, МКИ6 С 23 С 4/00, опубл. 27.12.97. Бюл.№ 36.

Каширин А. И., Клюев О. Ф., Шкодкин А. В. Способ получения покрытий. Патент РФ на изобретение № 2183695. 2000, МКИ7 С 23 С 24/04, опубл. 20.06.02. Бюл. № 17.

Координаты разработчиков и условия приобретения их технологий или изделий можно узнать в редакции.

Особенности технологии производства

Технология микродугового оксидирования в части технологических преимуществ позволяет получать покрытие с широким спектром применения и наносить покрытие, как на новые изделия, так и для восстановления покрытий после износа, сокращает время нанесения покрытия, позволяет использовать меньшее количество оборудования, меньшее количество производственных площадей и экономит расход воды. Метод микродугового оксидирования позволяет сформировать покрытия, обладающие разнообразными функциональными свойствами, такие как коррозионностойкие, износостойкие, термостойкие, электроизоляционные, защитные и защитно-декоративные. Такая многофункциональность покрытий позволяет применять их в самых разнообразных отраслях промышленности.

  • Вопрос брокеру
  • Запрос по разработке
  • Разместить разработку

Микродуговое оксидирование – это электрохимический процесс модификации (окисления) поверхности вентильных металлов и их сплавов (например, сплавы Al, Mg, Ti и др.) в электролитной плазме с целью получения оксидных слоев (покрытий). Процесс этот берет свое начало от анодирования, однако проводится при большем напряжении, за счет чего происходят микродуговые разряды в точках пробоя барьерного слоя на поверхности. В области пробоя резко повышаются температура и давление, часть металла переходит в раствор, где присутствует в виде ионов.

Другая часть расплавленного металла взаимодействует с компонентами электролита и формирует МДО-покрытие. Благодаря этому покрытие формируется не только на поверхности, но и вовнутрь изделия. Помимо этого, высокие температуры в зоне пробоя приводят к формированию градиентного переходного слоя на границе металл-покрытие. Этот слой обеспечивает прочное сцепление МДО-покрытия с подложкой, что в свою очередь обеспечивает адгезию полимерных покрытий наносимых на поверхность детали.

Технология МДО реализуется на оборудовании аналогичном гальваническому оборудованию. Аппаратурное оформление для МДО ближе всего к процессу анодирования алюминия. Их принципиальные различия состоят в используемых источниках питания и электролитах, являющихся собственными разработками. Это отличает технологию не только от анодирования и гальваники как таковой, но и от МДО реализуемого на других предприятиях.

Потребительские свойства

Можно сравнивать технологию микродугового оксидирования с процессом анодирования, так как начальная стадия микроплазменного процесса в растворах протекает примерно по схожему механизму. Однако возникновение микроплазменных разрядов после образования оксидной барьерной пленки приводит к резкому увеличению скорости процесса формирования покрытия, что является важным аргументом в пользу МДО, в плане производительности. Скорость нанесения покрытия в нашем случае превосходит скорость нанесения при анодировании.

Кроме того, в случае микродугового оксидирования нет жестких требований к подготовке поверхности алюминия, что исключает из процесса ряд предварительных операций, проводимых в агрессивных растворах при анодировании, что также сказывается на производительности. Сами растворы анодирования также очень часто представляют опасность для окружающей среды. В этом смысле растворы имеют существенные отличия, процесс ведется в слабощелочных экологически безвредных растворах.

МДО-технология также отличается от МДО-технологий других компаний. Практически все участники рынка МДО-технологий предлагают покрытия, которые требуют дополнительной механической обработки после МДО-процесса, что также увеличивает стоимость конечного продукта – покрытия. Применение ИП, разработанных нашими специалистами позволяют получать покрытия, которые имеют широкое применение – от подслоя под полимерные материалы до износостойких и коррозионностойких, работающих при высоких механических нагрузках (в узлах трениях при скоростях вращения до 60000 об-1) и температурах (до 320°С). Таким образом, процесс микродугового оксидирования имеет существенные преимущества: отсутствие предварительной обработки, высокая скорость нанесения покрытий, безопасность применяемых слабощелочных растворов электролитов, варьируемая толщина покрытия, возможность нанесения на сложнопрофильные изделия.

Конкурентные преимущества

Сочетая в себе сущность процесса классического анодирования с положительными технологическими особенностями, МДО позволяет поднять качество формируемых защитных покрытий на более высокий уровень. В результате анализа технологии получения МДО были выделены преимущества, связанные с особенностями:

  • электролита: малая концентрация, экологичность и неагрессивность электролитов и самого процесса, возможность обработки сложнопрофильных деталей благодаря высокой рассеивающей способности электролита;
  • осуществления технологического процесса: отсутствие необходимости тщательной предварительной подготовки поверхности детали (травления, обезжиривания, осветления, промывок горячей и холодной водой и т.д.) в начале технологической цепочки, что способствует минимизации производственных площадей и сокращения времени технологического процесса, устойчивый, легко воспроизводимый процесс;
  • оборудования: возможность получения покрытий большой толщины без применения сложного холодильного оборудования, простое и легко управляемое оборудование, возможность автоматизации технологического процесса;
  • свойств получаемых покрытий: возможность получения многофункциональных керамикоподобных покрытий, характеризующимися высокими эксплуатационными характеристиками и обладающими высокой адгезией, обработка не изменяет начальных размеров детали, так как покрытие формируется за счет преобразования поверхностного слоя, стабильность характеристик покрытий.

При переходе к этой технологии наблюдается повышение производительности труда и, соответственно, расширение ассортимента предлагаемой высококачественной продукции при постепенном снижении себестоимости обработки по сравнению с анодированием.

Есть несколько неоспоримых преимуществ, отличающих нашу технологию от МДО-технологий других компаний:

  • применение источников питания, разработанных специалистами нашей компании позволяют получать покрытия за более короткое время и с меньшими энергозатратами, при этом площадь загрузки составляет до 5 м2;
  • в отличие от других участников рынка МДО-технологий наша компания предлагает покрытие, которое не требует дополнительной механической обработки после МДО-процесса, что также снижает стоимость продукта;
  • возможность получения многофункциональных декоративных керамикоподобных покрытий, характеризующихся высокими эксплуатационными характеристиками и обладающими высокой адгезией.

  • Вопрос брокеру
  • Запрос по разработке
  • Разместить разработку

>Вид керамики, пигмент, придающий перламутровый отблеск

Главная

Ответ: ЛЮСТР

Подходит?

Задать другой вопрос:

1-я буква Л; 2-я буква Ю; 3-я буква С; 4-я буква Т; 5-я буква Р;

  • пятилетие
  • пигмент, наносимый на керамические изделия
  • покрытие керамики
  • «металлическое» покрытие керамики
  • пигмент, наносимый на керамические изделия поверх обоженной глазури
  • пятилетие
  • тончайшая прозрачная пленка, наносимая на глазурь для придания ей радужного отблеска
  • покрытие керамики
  • вид керамики, пигмент, придающий перламутровый отблеск
  • пигмент, наносимый на керамические изделия поверх обоженной глазури
  • перламутр керамики
  • тончайшая прозрачная пленка, наносимая на глазурь для придания ей радужного отблеска
  • Вид керамики, пигмент, придающий металлический или перламутровый отблеск
  • вид керамики, пигмент, придающий перламутровый отблеск
  • пигмент на глазури
  • перламутр керамики
  • металлический отблеск на керамике
  • Пигмент, придающий металлический или перламутровый отблеск
  • пигмент, наносимый на керамические изделия поверх обожженной глазури, дающий в результате восстановительного муфельного обжига металлический или перламутровый отблеск
  • пигмент на глазури
  • «перламутровое» покрытие керамики
  • металлический отблеск на керамике
  • пигмент, наносимый на керамические изделия
  • пигмент, наносимый на керамические изделия поверх обожженной глазури, дающий в результате восстановительного муфельного обжига металлический или перламутровый отблеск
  • «металлическое» покрытие керамики
  • «перламутровое» покрытие керамики