Машина чарльза бэббиджа

Аналитическая машина Чарльза Бэббиджа

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИСТОРИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ИСТОЧНИКОВЕДЕНИЯ

ЭССЕ НА ТЕМУ:

АНАЛИТИЧЕСКАЯ ВЫЧИСЛИТЕЛЬНАЯ МАШИНА ЧАРЛЬЗА БЭББИДЖА.

МИНСК

2007

ВВЕДЕНИЕ:

Аналитическая машина, спроектированная выдающимся английским математиком и изобретателем Чарльзом Бэббиджем, является значительной вехой в истории развития средств вычислительной техники. При ее проектировании в 1836-1848 годах Бэббидж фактически задал направление всему последующему развитию электронно-вычислительных машин (далее – ЭВМ). Ведь проект создания аналитической машины предусматривал целый ряд механизмов, присущих нынешним ЭВМ. Во-первых, предполагалось наличие тех же пяти устройств (арифметическое, устройства памяти, управления, ввода и вывода). Во-вторых, в число операций, помимо четырех арифметических, была включена операция условного перехода и операции с кодами команд. Кроме того, следует выделить, что все программы вычислений в аналитической машине Бэббиджа записывались на перфокартах пробивками.

В своем эссе я попытаюсь рассмотреть причины, сподвигшие Бэббиджа на попытку создания ЭВМ, выявить идеи, повлиявшие на творческий процесс британского изобретателя, объяснить причины, по которым Бэббиджу так и не удалось создать аналитическую машину, несмотря на огромные моральные и физические затраты ученого.

Хотя сам Бэббидж и не увидел плодов своей работы, его несомненное влияние на более чем вековой процесс создания известного нам компьютера доказывают следующие факты: в 1854 году шведским изобретателем Шойцем была-таки построена разностная машина в лишь немного видоизмененном виде, а в 1991 году, к двухсотлетию Бэббиджа, британские ученые по его чертежам воссоздали разностную машину №2, а также 3,5-тонный принтер. Оба устройства превосходно работают и сейчас – в чертежах Бэббиджа найдено всего две ошибки.

1. ЮНОСТЬ ЧАРЛЬЗА БЭББИДЖА

Чарльз Бэббидж появился на свет 26 декабря 1791 года на юго-западе Англии в городке Тотнес графства Девоншир в семье банкира. Отец его, Бенджамин Бэббидж, банкир фирмы «Прэд, Манкворт и Бэббидж», впоследствии оставил сыну довольно большое состояние. Чарльз был весьма слабым, болезненным ребенком, и поэтому родители не спешили отдавать его в школу. С самого детства он индивидуально занимался с учителем алгебры, и неудивительно, что вскоре она стала его любимой наукой. Ко времени поступления в 1811 году в Тринити-колледж Оксфордского университета, восемнадцатилетний Бэббидж превосходил в своих математических познаниях всех своих сверстников. Остались сведения, что вопросы юного Бэббиджа неоднократно ставили в тупик самих преподавателей колледжа.

Несмотря на болезненность, юный Бэббидж был очень разносторонним и общительным молодым человеком. Наиболее близкими его друзьями в колледже стали Джон Гершель, внук великого астронома У. Гершеля, и Джордж Пикок. Друзья однажды даже заключили прелюбопытное соглашение: «оставить этот мир мудрее, чем он был ими найден».

Спустя год после поступления в колледж Бэббидж и его друзья приняли участие в создании Аналитического общества, направленного на реформирование отдельных постулатов математики Ньютона, преподававшейся в университете, и изучение передовых достижений европейской науки. «Аналитическое общество» стало проводить регулярные заседания, на которых его члены выступали с научными докладами, развило бурную издательскую деятельность. Так, Бэббидж, Гершель и Пикок в 1816 году перевели с французского математический трактат профессора Лакруа и дополнили его двумя томами собственных примеров.

Бэббидж был одаренным студентом, но считал, что его друзья – Гершель и Пикок – достигли в математике куда больших успехов, чем он. Не желая по окончании колледжа быть третьим в списке лучших студентов, Чарльз перевелся в колледж святого Петра. Действительно, там он стал первым студентом и в 1814 году получил степень бакалавра. Спустя три года Бэббидж получил ученое звание магистра.

2. УЧЕНЫЕ ИНТЕРЕСЫ. НАЧАЛО РАБОТ НАД ВЫЧИСЛИТЕЛЬНОЙ МАШИНОЙ.

Новоиспеченный магистр был крайне деятельной натурой, обладавшей широчайшим диапазоном научных интересов. В молодые годы он начал писать словарь и грамматику мирового универсального языка, однако эта работа осталась незавершенной. Примерно в это же время Бэббидж заинтересовался возможностью создания вычислительной машины, исключавшей возможность неточных расчетов и математических ошибок при расчете логарифмических таблиц. Существует две красивые легенды касательно того, как Бэббидж окончательно сформулировал для себя задачу создания машины, способной самостоятельно создавать безошибочные таблицы. Согласно первой версии, изложенной Бэббиджем, однажды Гершель принес ему расчеты, выполненные вычислителями Астрономического общества. Однако у Бэббиджа и Гершеля возникли сомнения относительно качества работы вычислителей. Они принялись за утомительную проверку и обнаружили большое число ошибок. Бэббидж сказал: «Я хотел бы, чтобы эти расчеты выполнялись с помощью источника энергии», на что Гершель ответил: «Это вполне возможно». По словам Бэббиджа, этот разговор породил идею, воплощением которой он занимался всю жизнь.

По второй версии, изложенной Бэббиджем, дело обстояло несколько иначе. Однажды вечером Бэббидж сидел в комнате Аналитического общества и размышлял о сложности расчета логарифмических таблиц. В это время в комнату вошел один из его друзей и спросил: «Ну, Чарльз, о чем ты мечтаешь?» Указывая на таблицу логарифмов, Бэббидж ответил: «Я думаю, что все эти таблицы можно рассчитать на машине». Бэббидж пишет, что «это событие, должно быть, произошло в 1812 или 1813 году».

Делом жизни создание вычислительной машины стало для молодого математика после его переезда для продолжения учебы во Францию. Там Бэббидж встречался с великими Пьером Лапласом и Жаном-Батистом Фурье, но наибольшее впечатление на него произвел барон Гаспар де Прони. Именно в трудах де Прони Бэббидж почерпнул мысль о создании технологии вычислений.

Для того, чтобы понять отрешенность, с которой взялся за создание машины британский изобретатель, приведу следующий факт. В 1828 году Бэббидж был избран профессором математики Люкасовского колледжа Кембриджского университета (спустя много лет он скажет, что это была единственная честь, которой он был удостоен в своей стране). Так вот: за 11 лет профессорской деятельности ученый не прочел в университете ни одной лекции, все время посвящая расчетам машины.

Тем не менее, кафедра все-таки отнимала определенное время, и тогда в 1839 году Бэббидж оставляет профессорскую деятельность. Отныне и до конца его жизнь целиком и полностью будет посвящена созданию вычислительных машин.

3. РАЗНОСТНАЯ МАШИНА БЭББИДЖА.

Дабы лучше понять будущие идеи Бэббиджа, рассмотрим подробнее основные научные вехи в жизни де Прони. Правительство обновленной после пе периода империи Франции решило создать новые логарифмические и тригонометрические таблицы. Эту работу ипоручили барону де Прони, руководившему в ту пору Бюро переписи.

Де Прони перенес идею разделения труда на вычислительный процесс. Он распределил исполнителей по трем уровням квалификации: высшую ступень занимали несколько выдающихся математиков, среди которых были Лежандр и Лазар Никола Карно, — они готовили математическое обеспечение. На втором уровне стояли образованные «технологи», которые организовывали рутинный процесс вычислительных работ. Последними в этой структуре были вычислители — computers (первое использование этого слова): их квалификационный максимум — умение складывать и вычитать (обычно вычислителей набирали из девушек легкого поведения, которые после революции решились сменить профессию).

Заслуга де Прони в том, что он нашел алгоритмический и технологический подходы для сведения сложных вычислений к рутинным операциям, не требующим от большинства исполнителей творческого подхода. В принципе, де Прони создал первую вычислительную машину, где в качестве процессора использовались вычислители. Этот подход 150 лет успешно применялся при проведении сложных и даже очень сложных расчетов — от разработки конструкций кораблей до создания первых атомных бомб.

Распределение вычислительноготруда у де Прони наводит Бэббиджа на мысль о замене человека-вычислителя (который неизбежно ошибается) машиной — которой, как полагал Бэббидж, ошибки неведомы.

Британский ученый с головой бросается в новую для него ипостась математической науки. В 1819 году Бэббидж описал машину, способную рассчитывать и печатать большие математические таблицы, и сконструировал машину для табулирования, состоявшую из валиков и шестеренок, вращаемых с помощью рычага. Машина могла производить некоторые математические вычисления с точностью до восьмого знака после запятой. На ней Бэббидж, в частности, Рассчитал таблицу квадратов. После окончания этой машины Бэббидж был полон творческого энтузиазма, полагая, что основные трудности уже пройдены. Дальнейшие планы изобретателя были весьма оптимистичны.

В 1822 г. Бэббидж обратился к президенту Королевского общества Дэви с письмом, в котором предлагал построить разностную машину значительно больших размеров, чем предыдущая, для расчета, в первую очередь, астрономических и навигационных таблиц Работу над постройкой разностной машины Чарльз Бэббидж начал в 1823 году, сразу после того, как получил правительственную стипендию для продолжения работ над созданием вычислительных машин. Разностная машина должна была производить вычисления с точностью до двадцатого знака после запятой. Постройка механизма отняла у Бэббиджа десять лет, ее конструкция становилась все более сложной, громоздкой и дорогой. Именно из-за финансовой несостоятельности проекта работу над созданием разностной машины пришлось прекратить, так и не достигнув осязаемого результата. Правда, разностная машина все-таки будет построена, но лишь спустя без малого 200 лет (см. введение)…

Ценность разностной машины Чарльза Бэббиджа в том, что он впервые предложил машину, которая в отличие от всех предыдущих могла не только производить один раз заданное действие, но и осуществлять целую программу вычислений. Наряду с табулированием полиномов по методу конечных разностей на машине можно было рассчитывать значения функций, не имеющих постоянных разностей, с помощью искусно подобранных эмпирических формул.

Сам Бэббидж достаточно ясно представлял назначение своей машины. Он пропагандировал использование математических методов в различных областях науки и предсказывал при этом широкое применение вычислительных машин

4. АНАЛИТИЧЕСКАЯ МАШИНА БЭББИДЖА

На момент прекращения работ над созданием разностной машины деятельный мозг Бэббиджа был занят решением уже другой, более тяжелой задачи. Бэббидж пожелал создать новый прибор – Аналитическую машину (AnalyticalEngine). Ее главным отличием от разностной машины должно было стать то обстоятельство, что она была программируемой и могла выполнять любые заданные ей вычисления.

От арифмометра новая машина отличалась наличием регистров. В них сохранялся промежуточный результат вычисления, и с их же помощью выполнялись действия, предписанные программой. Вычислительные возможности, открывшиеся после изобретения регистров, поразили самого Бэббиджа. На этот счет сохранилась следующая реплика изобретателя: «Шесть месяцев я составлял проект машины, более совершенной, чем первая. Я сам совершенно поражен той вычислительной мощностью, которой она будет обладать. Еще год назад я не смог бы в такое поверить!»

Архитектура Аналитической машины Чарльза Бэббиджа уже практически соответствует современным ЭВМ. В ней присутствуют все три классических составляющих компьютера:

-controlbarrel — управляющий барабан (управляющее устройство — УУ), -store — хранилище (теперь мы называем это памятью — ЗУ) -mill — мельница (арифметическое устройство — АУ).

Регистровая память машины Бэббиджа была способна хранить как минимум сто десятичных чисел по 40 знаков, теоретически же могла быть расширена до тысячи 50-разрядных (для сравнения укажем, что запоминающее устройство одной из первых ЭВМ «Эниак» в 1945 г. сохраняло всего 20 десятиразрядных чисел). Арифметическое устройство имело, как мы бы сейчас сказали, аппаратную поддержку всех четырех действий арифметики. Машина производила сложение за 3 секунды, умножение и деление — за 2 минуты. Эта «мельница» состояла из трех основных регистров: два для операндов, а третий для результатов действий, относящихся к умножению. Имелись также таблица для хранения промежуточных результатов и счетчик числа итераций. Основная программа заносилась на барабан (Управляющее устройство), в дополнение к ней могли использоваться перфокарты, предложенные Жозефом Мари Жаккаром еще в 1801 г. для быстрого перехода с узора на узор в ткацких станках.

Большую помощь в разработке машины Бэббиджу оказала Ада Лавлейс (урожденная Байрон). Лавлейс была дочкой знаменитого английского поэта лорда Байрона, но так его никогда и не увидела, так как незадолго до ее рождения он уехал в Грецию, где и погиб в составе отряда повстанцев. Лавлейс бывала в гостях у Бэббиджа со своей подругой Мэри Соммервилл. Бэббидж всегда относился к ним приветливо и подолгу объяснял назначение всех устройств машины. А вскоре он обнаружил незаурядные математические способности Ады Лавлейс. Именно она впоследствии создаст первые в мире теоретические основы программирования, напишет первый учебник по программированию, и войдет в историю как «первая программистка».

Именно Лавлейс принадлежит идея использования для подачи на вход машины двух потоков перфокарт, которые были названы операционными картами и картами переменных: первые управляли процессом обработки данных, которые были записаны на вторых.

Информация заносилась на перфокарты путем пробивки отверстий. Из операционных карт можно было составить библиотеку функций. Помимо этого, AnalyticalEngine, по замыслу автора, должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования. Так что Бэббидж стал пионером идеи ввода-вывода.

Бэббидж предлагал также создать механизм для перфорирования цифровых результатов на бланке или металлических пластинках. Для хранения информации в памяти ученый собирался использовать не только перфокарты, но и металлические диски, которые будут поворачиваться на оси. Металлические пластинки и металлические диски могут теперь рассматриваться нами как далекие прототипы магнитных карт и магнитных дисков.

Только в одном отношении аналитическая машина не была автоматической. Функции, записанные таблично, должны были быть заранее отперфорированы. Предвосхищая будущее вычислительных машин, Бэббидж писал: «Кажется наиболее вероятным, что она рассчитывает гораздо быстрее по соответствующим формулам, чем пользуясь своими же собственными таблицами». И действительно, в современных вычислительных машинах существует обширная библиотека стандартных подпрограмм, с помощью которой рассчитываются функции различной степени сложности. Интересно, что термин «библиотека» для данного применения также был впервые употреблен Чарльзом Бэббиджем!

5. ПРИЧИНЫ НЕУДАЧИ БЭББИДЖА

И все же, несмотря на целый ряд блестящих догадок и новаторских изобретений, опередивших свое время на целый век, Чарльзу Бэббиджу так и не удалось закончить Аналитическую машину. Основной причиной неудачи является главное достоинство машины: Бэббидж действительно слишком превзошел свое время (не случайно в конце жизни он скажет: «я готов отдать последние годы своей жизни за то, чтобы прожить три дня через 150 лет, и чтобы мне подробно объяснили принцип работы будущих машин»). Как видим, Бэббидж уже не сомневался в будущем развитии вычислительной техники. Дело в том, что одна из двух главных причин незаконченности работы – невозможность в то время обрабатывать металл с высокой степенью точности (в то время как для реализации проекта Аналитической машины только зубчатых колес потребовалось бы несколько тысяч!) И в наши дни технологи бы сильно призадумались над возможностью постройки подобной машины, а в те времена самому Бэббиджу нередко приходилось изобретать технологии производства деталей, отвлекаясь от общего направления проекта.

Второй проблемой являлась финансовая. Если поначалу различные научные общества с энтузиазмом поддерживали Бэббиджа, то совсем скоро они охладели к затратному проекту с размытыми целями. В 1851 году Бэббидж с горечью заявлял, что все, связанное с машиной, он сделал за собственные деньги. Известно, что ученый в целях добычи материальных средств написал роман, пытался избраться в Парламент Британской империи, даже одно время играл в лотерею!

Судьба Бэббиджа – это трагическая судьба ученого, так и не увидевшего плодов своего труда. До самого своего конца он заявлял, что ненавидит жизнь, людей и Английское правительство. Когда он 14 декабря 1871 года почувствовал себя плохо, он сказал лишь одно: «Долгожданное время приходит!». Он умер в этот же день, вечером, на руках у собственного сына, не дожив до восьмидесятилетия всего нескольких дней. На похоронах человека, предвосхитившего развитие вычислительной техники на сотни лет вперед, присутствовало всего лишь несколько близких друзей.

ЗАКЛЮЧЕНИЕ

Великий английский ученый Чарльз Бэббидж попытался на механической основе создать машину, принадлежащую электронному периоду. Соответственно, это его начинание просто не могло завершиться успехом. Тем не менее, это же несоответствие подчеркивает гениальность Бэббиджа: задолго до возникновения электронных вычислительных машин он разработал принципы построения машин, основные их узлы, установил возможности вычислительных машин и предсказал пути их дальнейшего развития.

При изучении творчества Бэббиджа поражает даже простое перечисление проблем, которые он поставил и пытался разрешить, одни более успешно, другие менее, в аналитической машине: 1) разработка основного состава блоков; 2) планирование большого объема памяти; 3) разделение арифметического и запоминающего устройства; 4) применение изменяемой программы вычислений; 5) передача управления с помощью условного перехода; 6) работа с адресами и кодами команд; 7) контроль считыванием; 8) наличие библиотеки подпрограмм; 9) применение перфокарт, печатание данных ввода и вывода и некоторые другие. Подавляющее большинство из идей Бэббиджа были реализованы спустя сто с лишним лет.

Каждое новое открытие в современной науке заставляет по-новому смотреть на достижения прошлых веков. Если в конце прошлого и начале нашего века имя Бэббиджа было почти забыто, а его работы не были оценены и поняты, то с развитием ЭВМ интерес к его работам и личности возрос.

Бэббидж предстает перед нами как гениальный ученый, во многом предвосхитивший развитие вычислительной техники, ставшей важнейшим проявлением современной научно-технической революции.

БИБЛИОГРАФИЯ

1. Дорофеева А. В. Чарльз Бэббидж и его аналитическая машина: Разраб. проекта вычисл. машины с про-гр. упр. англ. математиком в середине 40-х годов XIX в. //Новые методы и средства обучения — В огл. авт.: Дорофеева В. В. — М. — 1993. — С. 65-69.

2. Дорофеева А. В. Чарльз Бэббидж и его аналитическая машина: // Математика в шк. — 1995. – №2. — С. 78-80.

3. И.А. Апокин, Л.Е.Майстров, И.С. Эдлин «Чарльз Бэббидж».

4. Большая энциклопедия Кирилла и Мефодия – 2004. Статьи «Чарльз Бэббидж» и «Ада Лавлейс».

5. Интернет-сайт: http:/joinbiz.ru. Статья: «Чарльз Бэббидж. Человек, опередивший свою эпоху».

История создания

Первая идея разностной машины была выдвинута немецким инженером Иоганном Мюллером в книге, изданной в 1788 году.

Беббидж был знаком со статьёй Мюллера в переводе Джона Гершеля, но поскольку дата перевода неизвестна — было ли это до постройки Беббиджем машины или уже после, то остаётся неизвестным, находился ли Беббидж под влиянием работ Мюллера.

Считается, что основные идеи для создания своего проекта Бэббидж почерпнул из работ Гаспара де Прони, занимавшего должность руководителя бюро переписи при французском правительстве с 1790 по 1800 год.

Прони, которому было поручено выверить и улучшить логарифмические тригонометрические таблицы для подготовки к введению метрической системы, предложил распределить работу по трём уровням. На верхнем уровне группа крупных математиков занималась выводом математических выражений, пригодных для численных расчётов. Вторая группа вычисляла значения функций для аргументов, отстоящих друг от друга на пять или десять интервалов. Подсчитанные значения входили в таблицу в качестве опорных. После этого формулы отправляли третьей, наиболее многочисленной группе, члены которой проводили рутинные расчёты и именовались «вычислителями». От них требовалось только аккуратно складывать и вычитать в последовательности, определённой формулами, полученными от второй группы.

Работы де Прони (так и не законченные ввиду революционного времени), с которыми Бэббидж познакомился, находясь во Франции, навели Бэббиджа на мысль о возможности создания машины, способной заменить третью группу — вычислителей. В 1822 году Бэббидж опубликовал статью с описанием такой машины, а вскоре приступил к её практическому созданию. Как математику, Бэббиджу был известен метод аппроксимации функций многочленами и вычислением конечных разностей. С целью автоматизации этого процесса он начал проектировать машину, которая так и называлась — ра́зностная. Эта машина должна была уметь вычислять значения многочленов до шестой степени с точностью до 18-го знака.

В том же 1822 году Бэббиджем была построена модель разностной машины, состоящая из валиков и шестерней, вращаемых вручную при помощи специального рычага. Заручившись поддержкой Королевского общества, посчитавшего его работу «в высшей степени достойной общественной поддержки», Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).

Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.

Первая полностью построеная разностная машина в лондонском Музее науки

Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины, но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ. Difference Engine No. 2).

В период с 1989 по 1991 год к двухсотлетию со дня рождения Чарльза Бэббиджа на основе его оригинальных работ в лондонском Музее науки была собрана работающая копия разностной машины № 2. В 2000 году в том же музее заработал принтер, также придуманный Бэббиджем для своей машины. После устранения обнаруженных в старых чертежах небольших конструктивных неточностей обе конструкции заработали безупречно. Эти эксперименты подвели черту под долгими дебатами о принципиальной работоспособности конструкций Чарльза Бэббиджа (некоторые исследователи полагают, что Бэббидж умышленно вносил неточности в свои чертежи, пытаясь таким образом защитить свои творения от несанкционированного копирования).

Влияние на культуру

В 1972 году Гарри Гаррисоном в романе «Да здравствует Трансатлантический туннель! Ура!», написанном в жанре стимпанк, была упомянута «компьютерная машина Бэббиджа, занимавшая почти четверть объёма субмарины», использовавшаяся для анализа состояния тросов и регулирования их натяжения во время транспортировки строительных секций Трансатлантического туннеля, а также для калибровки курса «Наутилуса II».

В 1990 году Майклом Флинном был написан фантастический роман «В стране слепых» (англ. In the Country of the Blind). Некая тайная организация с помощью усовершенствованных аналитических машин Чарльза Бэббиджа математически рассчитывает возможное развитие событий и таким образом получает возможность влиять на ход истории.

В 1990 году Брюсом Стерлингом и Уильямом Гибсоном написан фантастический роман «Машина различий» (англ. The Difference Engine). Роман выдержан в стилистике стимпанка и также описывает разностную машину.

В 2005 Джон Краули опубликовал книгу «Роман лорда Байрона». Это вымышленная история о находке и расшифровке рукописи единственного прозаического произведения Байрона — романа «Вечерняя земля». Чтобы спасти роман от уничтожения, дочь Байрона Ада Лавлейс зашифровала его так, чтобы прочитать текст могли только потомки с помощью счётных машин, восходящих к разностной машине Бэббиджа.

В онлайн-проекте «Рука Ориона» описываются созданные на основе идей Бэббиджа полностью разумные и автономные механические ИИ величиной с крупный астероид.

> Перфокарта

Карты РМ делятся на три типа

  1. Программируемые карты.
  2. Числовые карты
  3. Операторы

> См. также

  • Метод конечных разностей
  • Вычислительная машина
  • Калькулятор Лейбница
  • Суммирующая машина Паскаля

Чарльз Бэббидж — краткая биография


Чарльз Бэббидж – британский изобретатель, создатель первой в мире ЭВМ. Ниже можно кратко прочесть его биографию.

Жизнь Чарльза Бэббиджа

Будущий математик родился в Лондоне, 26 декабря 1791 года, в семье преуспевающего банковского работника, и стал четвёртым ребёнком. Из-за слабого здоровья мальчик получал образование на дому – в 8 лет он едва не умер от сильной лихорадки. Математикой Чарли заинтересовался уже тогда, объявив родителям, что хочет изучить её более подробно – один из учителей, ходивших к Бэббиджам домой, позанимался с мальчиком и даже помог поступить ему в Кембридж осенью 1810 года.
В престижном университете Чарльз, впрочем, не задержался, так как преподавание математики оставляло желать лучшего. Тем не менее, именно здесь появилось «Аналитическое общество», в которое, помимо Бэббиджа, входили Джордж Пикок и Джон Гершель. Хотя поначалу не имел никаких серьёзных целей, в скором времени проект был официально признан на университетском уровне и до сих пор приглашает в свои ряды многообещающих математиков.
Помимо очевидного интереса к математике, Бэббидж в том числе занимался экономикой, физикой, астрономией, инженерией и даже политикой. После выпуска из Кембриджа он вплотную занялся научной работой совместно с Гершелем и написал немало научных книг. Он же был членом Астрономического Сообщества, чьей заслугой является введение общей системы измерения для всей астрономии.

Вклад в науку и технику

Помимо создания ЭВМ, за которую Бэббиджа запомнят навсегда, учёный оставил в истории так называемый «принцип Бэббиджа», касавшийся организации трудового производства. По словам математика, при разделении труда на промышленном производстве можно добиться большей эффективности в краткий период времени.
Свой вклад Бэббидж внёс и в строение поездов, создав своеобразные «дворники», быстро очищавшие железнодорожные пути от посторонних предметов. Для отслеживания показателей состояния рельсов, способных критично повлиять на передвижение поездов, был спроектирован вагон-динамометр.

Создание ЭВМ

Впервые мысль о вычислительной машине пришла Бэббиджу во время работы в Астрономическом сообществе – необходимость выполнять рутинную работу по исправлению чужих ошибок заставила его задуматься, нельзя ли как-либо автоматизировать этот процесс.
В основу механизма легла идея француза Гаспара де Прони, главы отдела переписи населения Франции: ради упрощения расчётов, он нанял несколько математиков, составлявших сложные расчёты, ещё десятерых, разбивавших их на несколько простых, и ещё 80 обычных сотрудников, проводивших элементарные действия. В 1822 Бэббидж описал устройство машины в научной статье и сразу же приступил к её разработке.
К сожалению, при жизни изобретатель результатов своей работы не увидел. Предварительно, он планировал потратить на работу не больше трёх лет, но потратил в три раза больше, исчерпав даже финансовый грант, предложенный государством на реализацию этой идеи. После неудачи Бэббидж видоизменил чертежи, занявшись более бюджетным механизмом, но и его создать не сумел. К счастью, сохранились его чертежи, по которым последователям удалось, избегая предыдущих ошибок, собрать вычислительную машину.
Отголоски того изобретения слышны и по сей день, так как «разностная машина», названная так самим Бэббиджем – прямой предок современного персонального компьютера. Первая ЭВМ во многом повторяет нынешнюю архитектуру: в её конфигурацию входили устройство, производившее расчёты, слоты памяти, помещённые в один «склад» и три перфокарты, отвечавшие за ввод и вывод данных. Хотя, фактически, сам Бэббидж и не добился того, о чём мечтал, его усилия значительно ускорили технический прогресс и упростили рутинные вычисления.

Беббидж и машины.


Одно время его считали гением, потом чуть не посадили в долговую яму.
Да и вправду потраченные суммы были фантастичны для начала 19 века.
А обещанная машина так и не заработала. А он мечтал уже о следующей.
Попутно он изобрел тахометр. Он поднимался с экспедицией на Везувий,
погружался на дно озера в водолазном колоколе, участвовал в археологических
раскопках, изучал залегание руд, спускаясь в шахты.
Почти год он занимался безопасностью железнодорожного движения и сделал
очень много специального оборудования. В том числе создал спидометр.
Кроме того он разработал немало оборудования для обработки металла.
Чарльз Бэббидж родился 26 декабря 1791 года в Лондоне. Его отец, Бенджамин Бэббидж, был банкиром. Мать звали Элизабет Бэббидж. Ее девичья фамилия Тип (Teape). В детстве у Чарльза было очень слабое здоровья. В 8 лет, его отправили в частную школу в Альфингтоне на воспитание священнику. На тот момент его отец уже был достаточно обеспечен, чтобы позволить обучение Чарльза в частной школе. Бенджамин Бэббидж попросил священника не давать Чарльзу сильных учебных нагрузок из-за слабого здоровья.
После школы в Альфингтоне Чарльз был отправлен в академию в Энфилде, где по существу и началось его настоящее обучение. Именно там Бэббидж начал проявлять интерес к математике, чему поспособствовала большая библиотека в академии.
После обучения в академии, Бэббидж обучался у двух репетиторов. Первый был священником, жившим возле Кембриджа. По словам Чарльза, священник не дал бы ему тех знаний, который он мог получить, обучаясь у более опытного репетитора. После священника у Бэббиджа был репетитор из Оксфорда. Он смог дать Бэббиджу основные классические знания, достаточные для поступления в колледж.

В 1810 году Бэббидж поступил в Тринити-колледж в Кембридже. Однако, основам математики он обучался самостоятельно по книжкам. Он тщательно изучал труды Ньютона, Лейбница, Лагранжа, Лакруа, Эйлера и других математиков академий Санкт-Петербурга, Берлина и Парижа. Бэббидж очень быстро обогнал своих преподавателей по знаниям и был сильно разочарован уровнем преподавания математики в Кембридже. Более того он заметил, что Британия вцелом заметно отстала от континентальных стран по уровню математической подготовки.

В связи с этим, он решил создать общество, целью которого являлось внесение современной европейской математики в Кембриджский университет. В 1812 году Чарльз Бэббидж, его друзья, Джон Гершель (John Herschel) и Джордж Пикок (George Peacock) и еще несколько молодых математиков основали «Аналитическое общество». Они стали проводить собрания. Обсуждать различные вопросы, связанные с математикой. Начали публиковать свои труды. Например, в 1816 году они опубликовали переведенный ими на английский язык «Трактат по дифференциальному и интегральному исчислению» французского математика Лакруа, а в 1820 году опубликовали два тома примеров, дополняющих этот трактат. Аналитическое общество своей активностью инициировало реформу математического образования вначале в Кембридже, а затем и в других университетах Британии.

В 1812 году Бэббидж перешел в колледж Св. Петра (Peterhouse). А в 1814 году он получил степень бакалавра. В том же году Чарльз Бэббидж женился на Джорджии Витмур (Georgiana Whitmore), и в 1815 году они переехали из Кембриджа в Лондон. За тринадцать лет брака у них было восемь детей, но пятеро из них умерли в детстве. В 1816 году он стал членом Королевского Общества Лондона. К тому времени он написал несколько больших научных статей в разных математических дисциплинах. В 1820 году он стал членом Королевского Общества Эдинбурга и Королевского Астрономического Общества. В 1827 году он похоронил отца, жену и двоих детей. В 1827 году он стал профессором математических наук в Кембридже, и занимал этот пост в течении 12 лет. После того, как он покинул этот пост, он большую часть своего времени посвятил делу его жизни — разработке вычислительных машин.

Часть разностной машины Чарльза Бэббиджа, собранная после смерти учёного его сыном из деталей, найденных в лаборатории отца.
Малая разностная машина

Впервые Бэббидж задумался о создании механизма, который позволил бы производить автоматически сложные вычисления с большой точностью в 1812 году. На эти мысли его натолкнуло изучение логарифмических таблиц, при пересчёте которых были выявлены многочисленные ошибки в вычислениях, обусловленные человеческим фактором. Ещё тогда он начал осмысливать возможность проведения сложных математических расчётов при помощи механических аппаратов.

Однако, Бэббидж не сразу начал заниматься развитием идеи построения вычислительного механизма. Лишь в 1819 году, когда он заинтересовался астрономией, он более точно определил свои идеи и сформулировал принципы вычисления таблиц разностным методом при помощи машины, которую он впоследствии назвал разностной. Эта машина должна была производить комплекс вычислений, используя только операцию сложения. В 1819 году Чарльз Бэббидж приступил к созданию малой разностной машины, а в 1822 году он закончил её строительство и выступил перед Королевским Астрономическим обществом с докладом о применении машинного механизма для вычисления астрономических и математических таблиц. Он продемонстрировал работу машины на примере вычисления членов последовательности. Работа разностной машины была основана на методе конечных разностей. Малая машина была полностью механической и состояла из множества шестерёнок и рычагов. В ней использовалась десятичная система счисления. Она оперировала 18 разрядными числами с точностью до восьмого знака после запятой и обеспечивала скорость вычислений 12 членов последовательности в 1 минуту. Малая разностная машина могла считать значения многочленов 7-ой степени.

За создание разностной машины Бэббидж был награждён первой золотой медалью Астрономического общества. Однако, малая разностная машина была экспериментальной, так как имела небольшую память и не могла быть использована для больших вычислений.

Работающая копия разностной машины в лондонском Музее науки
В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).

Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.

Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины, но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ. Difference Engine No. 2).

Основываясь на работах и советах Бэббиджа, шведский издатель, изобретатель и переводчик Георг Шутц (швед. Georg Scheutz) начиная с 1854 года сумел построить несколько разностных машин и даже сумел продать одну из них канцелярии английского правительства в 1859 году. В 1855 году разностная машина Шутца получила золотую медаль Всемирной выставки в Париже. Спустя некоторое время другой изобретатель, Мартин Виберг (швед. Martin Wiberg), улучшил конструкцию машины Шутца и использовал её для расчёта и публикации печатных логарифмических таблиц.


Разностный калькулятор Шутца
Аналитическая машина Бэббиджа:

Несмотря на то что разностная машина не была построена её изобретателем, для будущего развития вычислительной техники главным явилось другое: в ходе работы у Бэббиджа возникла идея создания универсальной вычислительной машины, которую он назвал аналитической и которая стала прообразом современного цифрового компьютера. В единую логическую схему Бэббидж увязал арифметическое устройство (названное им «мельницей»), регистры памяти, объединённые в единое целое («склад»), и устройство ввода/вывода, реализованное с помощью перфокарт трёх типов. Перфокарты операций переключали машину между режимами сложения, вычитания, деления и умножения. Перфокарты переменных управляли передачей данных из памяти в арифметическое устройство и обратно. Числовые перфокарты могли быть использованы как для ввода данных в машину, так и для сохранения результатов вычислений, если памяти было недостаточно.

Чарльз Бэббидж полагал, что Аналитическая машина будет производить вычисления и «запоминать» результаты с помощью набора валов и шестерней. Управление машиной предполагалось осуществлять с помощью массивных перфокарт.

В целом Беббиджа подвела недостаточная точность металлообработки того времени и конечно недостаток финансирования
В дальнейшем на протяжении почти столетия ничего похожего на Аналитическую машину не появилось, однако идея использования перфокарт для обработки данных была опробирована довольно скоро. Спустя 20 лет после смерти Бэббиджа американский изобретатель Герман Холлерит создал электромеханическую счетную машину — табулятор, в которой перфокарты использовались для обработки результатов переписи населения, проводившейся в США в 1890 г.
Принтер! для машины Бэббиджа:

Последние годы жизни Бэббидж посвятил философии и политической экономии.
Чарльз Бэббидж умер в возрасте 79 лет 18 октября 1871 года.

Машина различий Бэббиджа:

PS.
Многое из того, что известно об этой машине, дошло до нас благодаря научным трудам одаренного математика-любителя Огасты Ады Байрон (графини Лавлейс), дочери поэта лорда Байрона. В 1843 г. она перевела статью об Аналитической машине, написанную одним итальянским математиком, снабдив ее собственными подробными комментариями, которые касались потенциальных возможностей машины.

Аду Лавлейс, одну из немногих современников Чарлза Бэббиджа, кто сумел оценить Аналитическую машину, иногда называют первым в мире про граммистом. Она разработала теоретически некоторые приемы управления последовательностью вычислений, которые используются в программировании и по сей день. Например, она описала команды, обеспечивающие повторение определенной последовательности шагов до тех пор, пока не выполнено заданное условие. Теперь такая конструкция называется циклом.
В честь Ады Лавлейс назван один из языков программирования…

Восстановленная и работающая машина Беббиджа (видео)

В период 1989 по 1991 год к двухсотлетию со дня рождения Чарльза Бэббиджа на основе его оригинальных работ в лондонском Музее науки была собрана работающая копия разностной машины № 2. В 2000 году в том же музее заработал принтер, также придуманный Бэббиджем для своей машины. После устранения обнаруженных в старых чертежах небольших конструкционных неточностей, обе конструкции заработали безупречно. Эти эксперименты подвели черту под долгими дебатами о принципиальной работоспособности конструкций Чарльза Бэббиджа (некоторые исследователи полагают, что Бэббидж умышленно вносил неточности в свои чертежи, пытаясь таким образом защитить свои творения от несанкционированного копирования).

1.Биография Чарльза Бэббиджа
2.Чарльз Бэббидж — изобретатель и… политэконом
3.Нас переехали колеса Бэббиджа
4.http://www.sciencemuseum.org.uk/onlinestuff/stories/babbage.aspx

LiveInternetLiveInternet

Английский математик и инженер Чарльз Бэббидж (1791–1871) является одной из самых значительных фигур в предыстории компьютерных вычислений. Его по праву называют отцом вычислительной техники. Построенная им разностная машина № 1 (Difference Engine № 1) была первым успешным автоматическим устройством и остается примером инженерной точности даже в наше время. Хотя идеи Бэббиджа прямо не повлияли на создание современных компьютеров, его Аналитическая машина, задуманная в 1834 г., обладала всеми существенными логическими возможностями сегодняшних универсальных ПК.

Чарльз Бэббидж

Чарльз Бэббидж родился 26 декабря 1791 г. в Уолворте, графство Суррей, Англия. Он был одним из четырех детей в семье банкира Бенджамина Бэббиджа и Элизабет Тип (Elizabeth Teape). В юные годы Чарльз самостоятельно изучал алгебру, в которую был прямо-таки влюблен, а также штудировал труды многих европейских математиков. Посещая Тринити-Колледж в Кембридже в 1810 г., он обнаружил, что опережает в этой области некоторых учителей. Свое образование он завершил в в 1814 г. в Питерхаузе (колледж Святого Петра, Кембридж). В 1816 г. Чарльз Бэббидж был избран членом Королевского общества и занимал должность Лукасовского профессора математики (основана лордом Генри Лукасом в 1663 г.) в Кембриджском университете с 1828 г. по 1839 г.

Для правильной оценки мотиваций Чарльза Бэббиджа необходимо немного представить «технологическую атмосферу» 20–30-х годов XIX столетия. Это было время беспрецедентных инженерных амбиций. Транспорт, коммуникации, архитектура и производство находились в состоянии лихорадочных изменений. Изобретатели и конструкторы использовали новые материалы и процессы, и, казалось, инновациям не будет конца. Паровые машины неуклонно заменяли тягловую силу животных, металлические пароходы начали конкурировать с парусными судами, сеть железных дорог стремительно расширялась, а телеграф совершил революцию в коммуникациях. Расцвет науки, инженерии и появление новых технологий сулили неограниченные возможности.

Деталь оригинальной разностной машины № 1 (вверху) и чертежи блока переноса разряда

В то же время архитекторы, математики, астрономы, штурманы, специалисты ряда других профессий, в общем, все, кому необходимо было выполнять нетривиальные вычисления, использовали для этого напечатанные числовые таблицы, которые вычислялись, копировались, проверялись и набирались для печати вручную. Однако людям свойственно ошибаться, и предчувствие, что необнаруженная в расчетах ошибка приведет к катастрофе, никогда не покидало пользователей этих таблиц. Современник Бэббиджа Дионисиус Ларднер (Dionysius Lardner) написал в 1834 г., что случайная выборка из 40 томов числовых таблиц содержала не менее 3700 подтвержденных ошибок и неизвестное количество неподтвержденных. Это обусловливалось тремя основными причинами: ошибками в вычислениях, при подготовке рукописей и при наборе и печати.

Чарльз Бэббидж был не только экспертом в числовых таблицах, но и большим их поклонником: его собственная коллекция насчитывала около 300 томов и слыла самой представительной в мире. Он весьма критически относился к ошибкам, и его основным мотивом для разработки счетной машины стало желание удалить риск их возникновения при создании математических таблиц.

Часть вертикального стержня с цифровыми дисками

Довольно активные попытки автоматизировать вычисления предпринимались еще в XVII–XVIII веках. Приведем здесь наиболее известные примеры. Так, в 1623 г. Вильгельм Шиккард (Wilhelm Schickard) построил первый дискретный автоматический калькулятор и таким образом, по существу, открыл компьютерную эру. Его устройство, которое называлось «вычисляющие часы», было способно складывать и вычитать шестизначные числа и сообщало о переполнении звуком колокольчика. Операции выполнялись с помощью колесиков, и полный оборот колесика единиц инкрементировал колесо десятков. Эта концепция впоследствии нашла широкое применение. Шиккард был другом Иоганна Кеплера, и говорят, что тот пользовался изобретением Шиккарда при своих вычислениях. И машина, и ее чертежи пропали во время войны. Она была вновь «переоткрыта» в 1935, чтобы снова затеряться в очередной войне, а затем еще раз в 1956 г., и реконструирована в 1960-м.

Блез Паскаль построил суммирующий аппарат в 1642 г. Хотя его Pascaline была и не столь мощной, как машина Шиккарда, она получила большую известность. Он собрал около 50 штук, но смог продать только дюжину различных модификаций, работающих с восьмизначными числами.

Разностная машина № 2 в сборе

В 1671 г. известный математик Готфрид Лейбниц разработал устройство, которое могло умножать пяти- и двенадцатиразрядные числа и давать шестнадцатиразрядный результат. Оно затерялось на чердаке и было вновь изобретено в 1879 г. Однако наибольшим вкладом Лейбница в вычисления считается введение им двоичной системы счисления, использующейся сегодня во всех компьютерах. Но вернемся к Чарльзу Бэббиджу.

Предание гласит, что в 1821 г. Бэббидж и его друг, астроном Джон Гершель (John Hershel), сын известного астронома сэра Уильяма Гершеля, открывшего планету Уран, проверяли вручную числовые таблицы и находили одну ошибку за другой. Тогда Чарльз в отчаянии воскликнул: «Господи, если бы эти вычисления выполнялись с помощью пара!». Именно после этого он задумал сконструировать механический вычислитель беспрецедентной величины и сложности. Стереотипирование – процесс автоматической штамповки результатов – должно исключить ошибки при тиражировании таблиц. Таковым являлся план, который изобретатель, к сожалению, не смог реализовать при жизни. И причиной тому стали отнюдь не принципиальные ошибки.

Устройство вывода (принтер)

Итак, Бэббидж начал работу над своим проектом в 1821 г. В отличие от калькуляторов Шиккарда, Паскаля и Лейбница, разностная машина Бэббиджа предназначалась не для выполнения базовой арифметики, а для вычисления полиномов, имеющих множество приложений, и автоматической печати результатов. Она использовала метод разделенных разностей, хорошо известный тогда. Его преимущество заключается в том, что вычисление значений полиномов (в частном случае) на последовательности равноотстоящих точек не требовало производить операции умножения и деления, а сложение на механических калькуляторах было реализовать намного легче.

Однако технологические требования для производства частей машины Бэббиджа выходили за стандарты существующей на тот момент инженерной практики. Сложные формы деталей нуждались в специальных шаблонах и инструментах, к тому же необходимо было изготовить сотни идентичных деталей с довольно высокой точностью. К сожалению, Бэббидж задумал свою машину в то время, когда технология производства находилась в переходном периоде между ручным штучным и массовым изготовлением, и средств для автоматического производства повторяющихся деталей еще не было.

Основные этапы сборки машины в Музее истории компьютера и команда, которая ее осуществила

Конечно, Бэббидж тщательно рассмотрел существующие технологию и практику производства, посетив фабрики и мастерские как в Англии, так и на континенте. И сделал неутешительные выводы: точность и сложность требуемых для его машины деталей находятся за пределами возможностей технологии того времени. Согласно проекту полноразмерная разностная машина № 1 должна была состоять приблизительно из 25 тыс. деталей, суммарный вес которых достигал примерно 15 т. В собранном виде ее размеры составляли 2,1×2,5×0,9 м (Д×В×Ш).

Для создания проекта Чарльз Бэббидж нанял опытного инструментальщика и чертежника Джозефа Клемента (Joseph Clement). Законченная часть машины была собрана в 1832 г. и сегодня является одним из наиболее известных экспонатов в предыстории вычислительной техники. Это старейший из сохранившихся автоматических калькуляторов и пример непревзойденной по тем временам точности изготовления.

Надо сказать, что Бэббидж получил от правительства огромный грант – 17 500 фунтов стерлингов. Но работа над машиной остановилась в 1833 г., когда Клемент отказался от дальнейшего участия ввиду неразрешимого спора о компенсации за перемещение его мастерской на расстояние 4 мили к новому жилищу Бэббиджа. Так это устройство никогда и не построили. Около 12 тыс. неиспользованных частей, изготовленных с высокой точностью, позднее расплавили на лом. За средства, потраченные на разработку, можно было купить 22 новых паровоза на фабрике Роберта Стивенсона – чудовищная сумма в 1831 г.

Но Чарльз Бэббидж не сдался. В 1834 г. он задумывает новый, более амбициозный проект – универсальную программируемую вычислительную машину, впоследствии названную аналитической (Analytical Engine). Это был качественный скачок как в отношении логической концепции, так и инженерной конструкции. Данная модель расценивается как одно из замечательнейших интеллектуальных достижений XIX столетия.

Аналитическая машина обладала многими особенностями, присущими современным цифровым компьютерам. Она программировалась с помощью перфокарт – идея была заимствована из ткацкого станка Жаккарда, где они использовались для выработки крупноузорчатых тканей. Машина имела «склад», где хранились числа и промежуточные результаты, и отдельную «фабрику», выполняющую арифметические операции. В нее были «встроены» четыре арифметические функции, и она могла осуществлять прямые операции умножения и деления. Аналитическая машина также выполняла ряд действий, которые в современной терминологии носят названия «условный переход», «цикл», «микропрограммирование», «параллельная обработка», «защелка», «опрос», хотя сам Бэббидж никогда не применял этих терминов. В ней предполагались разные устройства вывода, включающие вывод на печать, перфоратор, плоттер и автоматическое получение стереотипов для изготовления печатных форм.

Логическая структура аналитической машины, по существу, совпадала с таковой для современных компьютеров: отдельные память (склад) и центральный процессор (фабрика), последовательные операции, использующие цикл «выборка–исполнение», и блоки для ввода и вывода данных и инструкций.

Небезынтересно отметить, что в 1833 г. на сцене появляется Ада Лавлейс, дочь английского поэта лорда Байрона, эпатировавшего лондонский истеблишмент до такой степени, что даже Пушкин, тоже не подарок, от него открещивался. «Нет, я не Байрон, я – другой …», – писал он, возможно, с сожаленьем.

Чарльз Бэббидж встретил ее на какой-то вечеринке. Лавлейс, которой исполнилось тогда семнадцать, имела некоторые познания в математике, что считалось весьма необычным для женщин того времени. Она познакомилась с небольшой рабочей секцией машины и сразу же стала приверженцем работы Бэббиджа. В 1843 г. Лавлейс перевела и опубликовала статью итальянского инженера Луиджи Менабреа (Luigi Menabrea) и написала к ней довольно обширное приложение, занимавшее в три раза больший объем, чем сам оригинал. Оно включало описание шагов, которые должна была сделать машина для решения определенной математической задачи, то есть, по сути, представила первое описание программы.

Лавлейс предположила, что машина способна выйти за границы чисел и манипулировать символами по определенным правилам. Она увидела, что числа могут быть представлены другими сущностями – например, буквами алфавита, и вместо манипулирования только цифрами вычислительные машины расширят свои возможности.

Эта запись, как показал XX век, оказалась пророческой, и появления программ Бэббидж не предвидел, несмотря на прозорливость.

В процессе работы над аналитической машиной он понял, как можно упростить разностную машину, и в период между 1847 г. и 1849 г. приступил к созданию ее второго варианта – Difference Engine № 2. Проект был более элегантный, поскольку вобрал в себя многие наработки от аналитической машины и требовал в три раза меньше деталей, чем предыдущий, при этом сохраняя все его возможности. С 8 тыс. деталей машина весила бы 5 т.

Бэббидж не предпринимал никаких попыток построить разностную машину № 2. Нужно сказать, что кроме нескольких частично завершенных механических сборок и тестовых моделей небольших работающих секций, ни одна из машин изобретателя не была построена в течение его жизни.

Чтобы доказать тезис, что только ограниченные возможности технологий викторианской эпохи стали основной причиной того, что Бэббидж не смог построить свои машины, Музей науки в Лондоне начал в 1985 г. создавать разностную машину № 2 по его оригинальным чертежам и из материалов, которые наиболее соответствовали бы тому периоду. Для производства повторяющихся деталей использовалась современная техника, точность же постарались оставить на уровне времен Бэббиджа. Вычислительная секция устройства, законченная в 1991 г., состоит из 4 тыс. движущихся деталей (исключая печатающий механизм) и весит 2,6 т. Ее длина достигает 3,4 м, высота – 2,1 м, а ширина – 5,5 м. В 2000–2002 гг. Музей добавил печатающее устройство, которое по размерам оказалось почти таким же, как и калькулятор, и весило 2,5 т, а также аппаратуру для стереотипирования. Таким образом, в целом проект занял 17 лет.

Дубликат машины и принтера, или «второй оригинал», закончили в апреле нынешнего года для частного благотворителя проекта Натана Мирвольда (Nathan Myhrvold), в прошлом вице-президента Microsoft. Мирвольд любезно согласился немного подождать с доставкой машины в его резиденцию и «одолжил» этот уникальный экспонат Музею истории компьютера в Маунтейн-Вью, Калифорния, где он будет выставлен вплоть до мая 2009 г. Можно сказать, что постиндустриальный век отдал должное человеку, который заложил его основы еще 160 лет назад.