Максимальная скорость по оптоволокну

Среди интернет-пользователей не утихают споры о том, какой кабель лучше использовать для выхода во всемирную сеть: оптоволокно или витую пару. Сторонники применения оптоволоконного кабеля говорят о его надежности, скорости и стабильности. Так ли это на самом деле?

Существует два вида кабеля, с помощью которых провайдеры выполняют подключение интернета и телевидения: оптоволоконный кабель и витая пара. Абоненты Baza.net подключены именно с помощью витой пары.

Конструкция данного кабеля довольно проста. Она представляет собой одну или несколько пар изолированных проводников, скрученных между собой и покрытых пластиковой оболочкой. Такой кабель можно разместить в квартире, как вам удобно. Например, под плинтусом. А устранение повреждений витой пары не займет большого количества времени.

С волоконно-оптическим кабелем совсем другая ситуация. Внутри него находится много элементов: стеклянные волокна, пластиковые трубки, трос из стеклопластика. Его нельзя так же свободно сгибать, иначе кабель может переломиться и в результате сигнал пропадет. Чтобы устранить повреждение в оптоволокне, необходимо будет вызывать специалиста с дорогостоящим оборудованием.

Кроме того, ремонт и замена оптоволокна может «влететь в копеечку».

На конце каждого кабеля находится коннектор. У витой пары это пластиковый наконечник, похожий на тот, что вставляется в стационарный телефон. Важно отметить, что этот коннектор универсален и подойдет практически к любой сетевой плате. Вы можете вставить его в ноутбук, Wi-Fi-роутер или в игровую консоль.

У оптоволокна другой коннектор, для которого необходимо будет приобрести специальный оптический терминал. Удовольствие не из дешевых, да и модельный ряд ограничен всего несколькими вариантами.

Конечно, максимально возможная скорость передачи данных через оптоволокно выше, чем через витую пару. Но стоит отметить, что вы навряд ли почувствуете эту разницу в скорости. Дело в том, что каждое устройство, будь то W-Fi-роутер, домашний компьютер или ТВ-приставка, имеет свой сетевой адаптер. Если ваше устройство было выпущено несколько лет назад, то его максимальная пропускная способность составляет только 100 Мбит/c, в то время как в новых устройствах она по умолчанию позволяет разогнаться до 1 Гбит/с. В таком случае, даже если вы провели оптоволокно, но выходите в интернет со старой модели ноутбука, вы не сможете получите скорость выше, чем 100 Мбит/с.

Мы решили проверить, какая максимальная скорость необходима рядовому пользователю для комфортного времяпрепровождения в интернете.

В качестве теста мы просматривали видео на Youtube в максимально высоком качестве, запускали онлайн-игры, слушали музыку из сети и скачивали файлы с различных ресурсов. Несмотря на то, что в офисе скорость интернета достигает 1 Гбит/с, ни одна из этих задач не потребовала больше, чем 72 Мбит/с.

Если говорить откровенно, то использование оптоволокна в квартире не нужно никому. Да и пользователи сами не знают, зачем им нужна такая скорость.

Специалисты со всего заявляют, что оптоволоконная сеть останется невостребованной еще минимум десяток лет. В данный момент практически не существует интернет-ресурсов, для которых вам нужна скорость выше 70-100 Мбит/с. Даже если в будущем и появятся страницы, с которыми не справится витая пара, мы сможем в минимальные сроки заменить оборудование на более актуальное и будем предоставлять доступ через волоконно-оптический кабель.

На самом деле вы и так выходите в интернет через оптоволоконный кабель.

Как провайдер, мы проводим оптоволокно до каждого многоквартирного дома, а уже дальше выполняем подключение интернета в каждую отдельную квартиру посредством витой пары.

Проведя ряд исследований, мы пришли к выводу, что стабильность передачи данных с помощью обоих типов кабеля абсолютно идентична и никаким образом не зависит от их пропускной способности.

Так что же выбрать?

Вывод напрашивается сам. Витая пара дешевле и доступнее, чем оптоволоконный кабель, который не имеет преимуществ в использовании для обычного пользователя. Уважаемые друзья, тщательно выбирайте провайдера и всегда вспоминайте данную статью перед тем, как отдать предпочтение тому или иному способу подключения интернета.

Создание технологии передачи сигнала с помощью света, проходящему по стержням из кварцевого стекла, можно считать величайшим открытием ХХ века. Это произошло в 1934 году, когда в Америке был получен патент на оптическую телефонную линию.

С тех пор развитие волоконно-оптических линий связи стало приоритетным направлением в создании проводных систем передачи данных на большие расстояния с высокой скоростью и структурированных кабельных систем.

Что тормозит пропускную способность оптоволокна

Оптоволокно состоит из оболочки и сердцевины круглого сечения. Сердцевина диаметром 9 мкм изготавливается из кварцевого стекла и имеет коэффициент преломления 1,479. Оболочка имеет диаметр 125мкм и содержит легирующие элементы, которые изменяют коэффициент преломления до 1,474. Поэтому луч света, направленный в сердцевину, распространяется за счет многократного отражения от оболочки.

Оптические кабеля связи имеют ряд преимуществ перед медными:

  • пропускная способность оптоволокна позволяет уже сегодня передавать данные до 10Гбит/сек
  • слабое затухание сигнала дает возможность передачи информации на большие расстояния без усилителей
  • невосприимчивость к перекрестным электромагнитным влияниям
  • информационная безопасность

Еще 20 лет назад мы наслаждались интернетом через телефонные сети и модемы со скоростью 10 Кбит/сек. Но время диктует свои требования, поэтому сегодняшние достижения и возможности оптических линий связи нельзя считать удовлетворительными.

Решение новых задач по обработке данных требует запаса производительности сети. Повышение скорости передачи по оптоволокну связано с использованием дополнительного активного оборудования.

К проблемным факторам, которые тормозят дальнейшее развитие оптических сетей, можно отнести:

  • затухание сигнала из-за рассеивания и поглощения фотонов света
  • использование нескольких частот пропускания уменьшает скорость передачи
  • искажение сигнала за счет многократного преломления

На сегодняшний день одним из недостатков оптических линий связи является дорогостоящее активное оборудование. Поэтому решение задачи лежит в другой плоскости.

Будущее оптоволоконных сетей

Вместе с технологиями оптического мультиплексирования и усовершенствования приемопередающего оборудования продолжаются работы по созданию нового волокна. В 2014 году ученые Датского Технического университета установили мировой рекорд — максимальная скорость передачи данных по оптоволокну составила 43Тбит/с.

Они использовали новый вид оптического волокна, разработанное японской компанией. Сигнал передавался по волокну, имеющему 7 сердцевин от одного лазерного источника. Пока что это лабораторные исследование, которые не внедрены в эксплуатацию. Однако, новые разработки и достижения обязательно приведут к увеличению пропускной способности и снижению затрат на постройку ВОЛП.

Исследователи из Технического университета Дании (DTU) установили новый мировой рекорд передачи информации по оптоволоконному кабелю. Максимальная зафиксированная скорость составила 43 терабита в секунду. Это быстрее, чем 32 Тбит/с, полученные немецкими учеными из Технического института Карлсруэ.

Ранее те же датчане достигли самой высокой в мире скорости комбинированной передачи данных — 1 петабит в секунду, используя сотни лазеров. Однако новая высота была взята ими при помощи всего одного лазерного передатчика, что гораздо энергоэффективнее.

В DTU воспользовались новым типом оптоволокна, созданным японской телекоммуникационной компанией NTT. Оно содержит сразу семь стеклянных сердцевин, по которым проходит свет, а не одну, как обычные волокна. При этом большее число сердцевин никак не сказывается на толщине провода.

Новый рекорд был подтвержден на международной конференции лазерных технологий и электронной оптики CLEO 2014, которая состоялась в Сан-Хосе (штат Калифорния, США) в прошлом месяце. Исследователи ожидают, что стремление к более быстрым скоростям передачи информации приведет к увеличению пропускной способности и, в то же время, к сокращению энергопотребления.

В наше время, в мире расцвета современных цифровых технологий, оптоволокно (ВОЛС) широко используется в различных отраслях. Например, одномодовые оптические волокна используются для передачи данных на очень большие расстояния, которые измеряются десятками и даже сотнями километров. Основным материалом для изготовления стеклянных оптических волокон служит кварцевое стекло. Однако, используются также и пластиковые оптоволокна. Одним из весомых преимуществ использования оптических волокон в телекоммуникационных сетях, является высокая защищенность передачи данных от несанкционированного доступа. Также, при использовании оптоволоконных сетей, скорость соединения значительно возрастает, увеличивается и надежность соединения. Таковы основные качественные характеристики оптического волокна. Не многим среднестатистическим пользователям наверное известно, но оптоволокно используется также и в домашних компьютерных сетях. Кроме вышеописанного, оптические волокна часто используются, как источник света. Например в медицине, или для создания различных световых эффектов в рекламе и шоу бизнесе.

Виды оптоволоконных кабелей и типы ВОЛС

Вообще существует два основных типа оптоволоконного кабеля — одномодовый и многомодовый. Главная разница — в различии режимов прохождения по ним лучей света. Одномодовый стоит дороже, но его качество значительно выше. Для прокладки оптоволоконных линий в помещении используются легкие оптические кабеля. Если прокладка идет под землей, например в канализации, то данный процесс требует использования более толстого кабеля с дополнительными элементами защиты, что оберегает его от механических повреждений. Непосредственно в землю прокладываются оптоволоконные кабеля, защищенные специальной стальной сеткой. В дополнение ко всему, кабель идет в полимерных трубах, что надежно обеспечивает его защиту. Для воздушной подвески используют так называемый самонесущий кабель. Его прокладывают поверх зданий, либо по столбам.

Если рассматривать сетевую топологию оптоволоконной сети, то есть три основных способа создания такой сети. В первом случае, сигнал проходит через все устройства параллельно подсоединенные к главному кабелю, отражается от конечных терминалов и попадает на ту электронную машину, адрес которой соответствует адресу электронного послания. Согласно второму способу связи, предполагается подключение нескольких компьютеров отдельным кабелем к главному концентратору. И, наконец, третий способ предполагает заключение всех компьютеров сети в кольцо, где каждый из них выполняет функцию по дублированию сигнала. Последний тип создания сети не является самым надежным, поскольку при любом нарушении в работе одного звена в цепочке, нарушается работа всей сети целиком.

Также хочется обратить немного вашего внимания на типы коннекторов. Наибольшую популярность завоевали симметрические коннекторы штекерного типа. Если коннекторы разных типов, то для их стыковки предусмотрено использование специальных гибридных оптических адаптеров. Необходимость включения дуплексных пар оптоволокна потребовала разработки так называемых дуплексных коннекторов. На сегодняшний день, существуют несколько вариантов этого типа разъема.

Сварка оптоволоконного кабеля

Чтобы соединить оптоволоконные кабели, понадобится также специальный сварочный аппарат для оптоволокна. Еще несколько лет назад использовались аппараты ручной сварки, полуавтоматы и автоматы. При сварке вручную, использовались аппараты типа КСС с юстировочным устройством для сведения волокон и высоковольтным преобразователем, который собственно и создавал саму сварочную дугу. С помощью полуавтомата, автоматическая юстировка осуществлялась согласно уровню сигнала, что проходил через сведенные волокна. Совмещение волокон проводилось посредством микродвигателей, но под чутким руководством ответственного лица, то есть оператора.

В наши дни, для оптоволоконной сварки широко используется автоматический сварочный аппарат ВОЛС с контролем соединения по конфигурации. Идеально точное сведение волоконных кабелей, в данном случае, осуществляется посредством вмонтированных в сварочный аппарат микровидеокамер. Юстировка и сварка происходит под управлением специального контроллера. Оператор имеет возможность наблюдать за выполнением процесса на небольшом дисплее. А сама технология тут довольно проста, именно благодаря автоматизации процесса. Человеку нужно очистить и сколоть оптоволоконный кабель и вложить его в соответствующие зажимы сварочного аппарата. При смене типа оптоволокна нужно будет просто указать нужную программу для сваривания. Далее сведение волокон осуществляется исключительно в автоматическом режиме. Для запуска процесса сварки просто необходимо нажать соответствующую кнопку. Когда он будет закончен, остается вынуть волокна и натянуть на стык гильзу, а затем определить в автоматическую печку. Вот приблизительно так в общих чертах происходит сварка оптоволоконных кабелей, посредством полностью автоматического сварочного аппарата. Единственный минус в том, что его стоимость достаточно высокая.

Хотелось бы добавить также несколько слов о том, как правильно выбрать сварщик ВОЛС. Собственно, на какие характеристики стоит обратить внимание. Лучше всего выбирать аппараты с юстированием волокон по сердцевине, благодаря чему достигаются более продуктивные результаты работы. Также следует обращать внимание на показатель скорости сваривания и термоусадки. Хорошо, когда сварочный аппарат имеет возможность работать от независимого источника питания. Речь идет об аккумуляторных батареях. Чем их емкость выше, тем больше на автономном питании сможет проработать устройство. Ведь работать монтажникам приходится не всегда в комфортных условиях.

Версия для печати