Левитация магнитов своими руками

Начало XX века в физике вполне можно назвать эпохой предельно низких температур. В 1908 году голландский физик Хейке Камерлинг-Оннес впервые получил жидкий гелий, имеющий температуру всего на 4,2° выше абсолютного нуля. А вскоре ему удалось достичь температуры менее одного кельвина! За эти достижения в 1913 году Камерлинг-Оннес был удостоен Нобелевской премии. Но он вовсе не гнался за рекордами, его интересовало, как вещества меняют свои свойства при столь низких температурах, — в частности, он изучал изменение электрического сопротивления металлов. И вот 8 апреля 1911 года произошло нечто невероятное: при температуре чуть ниже температуры кипения жидкого гелия электрическое сопротивление ртути внезапно исчезло. Нет, оно не просто стало очень малым, оно оказалось равным нулю (насколько это было возможно измерить)! Ни одна из существовавших на тот момент теорий ничего подобного не предсказывала и объяснить не могла. В следующем году подобное свойство было обнаружено у олова и свинца, причем последний проводил ток без сопротивления и при температурах даже чуть выше температуры кипения жидкого гелия. А к 1950−1960-м годам были открыты материалы NbTi и Nb3Sn, отличающиеся способностью сохранять сверхпроводящее состояние в мощных магнитных полях и при протекании больших токов. Увы, они все еще требуют охлаждения дорогим жидким гелием.

1. Установив «летающий вагон» с начинкой из сверхпроводника, с обкладками из пропитанной жидким азотом меламиновой губки и оболочкой из фольги на магнитный рельс через прокладку из пары деревянных линеек, заливаем в него жидкий азот, «вмораживая» магнитное поле в сверхпроводник.2. Дождавшись охлаждения сверхпроводника до температуры меньше -180°С, аккуратно вынимаем из-под него линейки. «Вагон» стабильно парит, даже если мы расположили его не совсем по центру рельса.

Следующее великое открытие в области сверхпроводимости произошло в 1986 году: Йоханнес Георг Беднорц и Карл Александр Мюллер обнаружили, что совместный оксид меди-бария-лантана обладает сверхпроводимостью при очень высокой (по сравнению с температурой кипения жидкого гелия) температуре — 35 К. Уже в следующем году, заменив лантан на иттрий, удалось достичь сверхпроводимости при температуре 93 К. Конечно, по бытовым меркам это все еще довольно низкие температуры, -180°С, но главное, что они выше порога в 77 К — температуры кипения дешевого жидкого азота. Кроме огромной по меркам обычных сверхпроводников критической температуры, для вещества YBa2Cu3O7-x (0 ≤ x ≤ 0,65) и ряда других купратов достижимы необычайно высокие значения критического магнитного поля и плотности тока. Такое замечательное сочетание параметров не только позволило куда шире применять сверхпроводники в технике, но и сделало возможными множество интересных и зрелищных опытов, которые можно проделать даже в домашних условиях.

Нам не удалось зафиксировать никакого падения напряжения при пропускании через сверхпроводник тока более 5 А, что говорит о нулевом электрическом сопротивлении. Ну, по крайней мере, о сопротивлении меньше 20 мкОм — минимума, который можно зафиксировать нашим прибором.

Какой выбрать

Для начала нужно раздобыть подходящий сверхпроводник. Открыватели высокотемпературной сверхпроводимости запекали смесь оксидов в специальной печи, но для простых опытов мы рекомендуем купить готовые сверхпроводники. Они выпускаются в виде поликристаллической керамики, текстурированной керамики, сверхпроводящих лент первого и второго поколения. Поликристаллическая керамика стоит недорого, но и параметры у нее далеки от рекордных: уже небольшие магнитные поля и токи могут разрушить сверхпроводимость. Ленты первого поколения тоже не поражают своими параметрами. Совсем другое дело — текстурированная керамика, она имеет наилучшие характеристики. Но для развлекательных опытов она неудобна, хрупка, деградирует со временем, и самое главное — найти ее в свободной продаже довольно сложно. А вот ленты второго поколения оказались идеальным вариантом для максимального числа наглядных опытов. Этот высокотехнологичный продукт умеют производить всего четыре компании в мире, в том числе российская «СуперОкс». И, что весьма важно, свои ленты, сделанные на основе GdBa2Cu3O7-x, они готовы продавать в количестве от одного метра, чего как раз хватает для проведения наглядных научных экспериментов.

Сверхпроводящая лента второго поколения имеет сложную структуру из множества слоев различного назначения. Толщина некоторых слоев измеряется нанометрами, так что это самые настоящие нанотехнологии.

Равно нулю

Наш первый опыт — измерение сопротивления сверхпроводника. Действительно ли оно нулевое? Измерять его обычным омметром бессмысленно: он покажет нуль и при подключении к медному проводу. Столь малые сопротивления измеряются иначе: через проводник пропускают большой ток и измеряют падения напряжения на нем. В качестве источника тока мы взяли обычную щелочную батарейку, которая при коротком замыкании дает около 5 А. При комнатной температуре как метр сверхпроводящей ленты, так и метр медного провода показывают сопротивление в несколько сотых ома. Охлаждаем проводники жидким азотом и сразу наблюдаем интересный эффект: еще до того как мы пустили ток, вольтметр уже показал примерно 1 мВ. По всей видимости, это термо-ЭДС, поскольку в нашей схеме много различных металлов (медь, припой, стальные «крокодильчики») и перепады температуры в сотни градусов (вычтем это напряжение при дальнейших измерениях).

  • Сделай сам

    Как объяснить ребенку, что такое «маятник Фуко»

  • Сделай сам

    Что будет если поджечь связку из 10 000 бенгальских свечей

Тонкий дисковый магнит прекрасно подходит для создания левитирующей платформы над сверхпроводником. В случае сверхпроводника-снежинки он легко «вдавливается» в горизонтальном положении, а в случае сверхпроводника-квадрата его стоит «вмораживать».

А теперь пропускаем ток через охлажденную медь: тот же провод показывает сопротивление уже всего в тысячные доли ома. А что же со сверхпроводящей лентой? Подключаем батарейку, стрелка амперметра мигом устремляется к противоположному краю шкалы, а вот вольтметр своих показаний не меняет даже на десятую милливольта. Сопротивление ленты в жидком азоте в точности равно нулю.

В качестве кюветы для сверхпроводящей сборки в форме снежинки отлично подошла крышка от пятилитровой бутыли с водой. В качестве теплоизоляционной подставки под крышку стоит использовать кусок меламиновой губки. Доливать азот приходится не чаще одного раза в десять минут.

Летательные аппараты

Теперь перейдем к взаимодействию сверхпроводника и магнитного поля. Малые поля из сверхпроводника вообще выталкиваются, а более сильные проникают в него не сплошным потоком, а в виде отдельных «струй». Кроме того, если мы двигаем магнит возле сверхпроводника, то в последнем наводятся токи, и их поле стремится вернуть магнит назад. Все это делает возможной сверхпроводящую или, как ее еще называют, квантовую левитацию: магнит или сверхпроводник могут висеть в воздухе, стабильно удерживаемые магнитным полем. Чтобы убедиться в этом, достаточно маленького редкоземельного магнитика и кусочка сверхпроводящей ленты. Если же иметь хотя бы метр ленты и неодимовые магниты покрупнее (мы использовали диск 40 x 5 мм и цилиндр 25 x 25 мм), то можно сделать эту левитацию весьма зрелищной, подняв в воздух дополнительный груз.

В первую очередь нужно нарезать ленту на кусочки и скрепить их в пакет достаточной площади и толщины. Скреплять можно и суперклеем, но это не слишком надежно, так что лучше спаять их обычным маломощным паяльником с обычным оловянно-свинцовым припоем. По результатам наших опытов можно рекомендовать два варианта пакетов. Первый — квадрат со стороной в три ширины ленты (36 x 36 мм) из восьми слоев, где в каждом следующем слое ленты укладываются перпендикулярно лентам предыдущего слоя. Второй — восьмилучевая «снежинка» из 24 отрезков ленты длиной 40 мм, уложенных друг на друга так, что каждый следующий отрезок повернут на 45 градусов относительно предыдущего и пересекает его в середине. Первый вариант немного проще в изготовлении, намного компактнее и прочнее, зато второй обеспечивает лучшую стабилизацию магнита и экономичный расход азота за счет его впитывания в широкие щели между листами.

Сверхпроводник может висеть не только над магнитом, но и под ним, да и вообще в любом положении относительно магнита. Равно как и магнит совсем не обязан висеть именно над сверхпроводником.

Кстати, о стабилизации стоит сказать отдельно. Если заморозить сверхпроводник, а потом просто поднести к нему магнит, то висеть магнит не будет — упадет в стороне от сверхпроводника. Чтобы стабилизировать магнит, нам нужно заставить поле проникнуть внутрь сверхпроводника. Сделать это можно двумя способами: «вмораживанием» и «вдавливанием». В первом случае мы размещаем магнит над теплым сверхпроводником на специальной опоре, затем наливаем жидкий азот и убираем опору. Такой метод отлично работает с «квадратом», он же подойдет и для монокристаллической керамики, если вы ее найдете. Со «снежинкой» метод тоже работает, хоть и чуть хуже. Второй метод предполагает, что вы будете силой приближать магнит к уже охлажденному сверхпроводнику, пока тот не захватит поле. С монокристаллом керамики такой метод почти не работает: слишком большие усилия нужны. А вот с нашей «снежинкой» работает великолепно, позволяя стабильно подвесить магнит в разных положениях (с «квадратом» тоже, но положение магнита невозможно сделать произвольным).

Чтобы увидеть квантовую левитацию, достаточно даже небольшого отрезка сверхпроводящей ленты. Правда, удерживать в воздухе получится лишь маленький магнитик и на небольшой высоте.

Свободное парение

И вот магнит уже висит в полутора сантиметрах над сверхпроводником, напоминая о третьем законе Кларка: «Любая достаточно развитая технология неотличима от магии». Почему бы не сделать картину еще более магической — разместить на магните свечку? Прекрасный вариант для романтического квантово-механического ужина! Правда, надо учесть пару моментов. Во‑первых, свечи в металлической гильзе стремятся сползти к краю диска-магнита. Чтобы избавится от этой проблемы, можно использовать подсвечник-подставку в виде длинного винта. Вторая проблема — выкипание азота. Если попробовать долить его просто так, то идущий из термоса пар гасит свечу, так что лучше использовать широкую воронку.

Восьмислойный пакет сверхпроводящих лент может легко удержать весьма массивный магнит на высоте 1 см и более. Увеличение толщины пакета повысит удерживаемую массу и высоту полета. Но выше нескольких сантиметров магнит в любом случае не поднимется.

Кстати, а куда именно доливать азот? В какую емкость поместить сверхпроводник? Проще всего оказались два варианта: кювета из сложенной в несколько слоев фольги и, в случае «снежинки», крышечка от пятилитровой бутыли с водой. В обоих случаях емкость ставится на кусок меламиновой губки. Эта губка продается в супермаркетах и предназначена для уборки, она — хороший теплоизолятор, который прекрасно выдерживает криогенные температуры.

Холодная жидкость В целом жидкий азот достаточно безопасен, однако при его использовании все-таки необходимо действовать аккуратно. Также очень важно не закрывать емкости с ним герметично, иначе при испарении в них повышается давление и они могут взорваться! Хранить и транспортировать жидкий азот можно в обычных стальных термосах. По нашему опыту в двухлитровом термосе он сохраняется как минимум двое суток, а в трехлитровом — еще дольше. На один день домашних экспериментов, в зависимости от их интенсивности, уходит от одного до трех литров жидкого азота. Стоит он недорого — примерно 30−50 рублей за литр.

Наконец, мы решили собрать рельс из магнитов и пустить по нему «летящий вагон» с начинкой из сверхпроводника, с обкладками из пропитанной жидким азотом меланиновой губки и оболочкой из фольги. С прямым рельсом проблем не возникло: взяв магниты 20 x 10 x 5 мм и укладывая их на листе железа подобно кирпичам в стене (горизонтальной стене, поскольку нам нужно горизонтальное направление магнитного поля), легко собрать рельс любой длины. Только нужно торцы магнитов смазывать клеем, чтобы они не разъезжались, а оставались плотно сжатыми, без зазоров. По такому рельсу сверхпроводник скользит совершенно без трения. Еще интереснее собрать рельс в форме кольца. Увы, здесь без зазоров между магнитами уже не обойтись, а на каждом зазоре сверхпроводник немного тормозится… Тем не менее хорошего толчка вполне хватает на пару-тройку кругов. При желании можно попробовать обточить магниты и изготовить специальную направляющую для их установки — тогда возможен и кольцевой рельс без стыков.

Автор — магистрант НИЯУ МИФИ

Редакция выражает благодарность компании «СуперОкс» и лично ее руководителю Андрею Петровичу Вавилову за предоставленные сверхпроводники, а также интернет-магазину neodim.org за предоставленные магниты.

Статья «Сопротивление бесполезно!» опубликована в журнале «Популярная механика» (№11, Ноябрь 2014).

Магнитная левитация – это технология, позволяющая поднимать объекты в воздух с помощью магнитного поля. Само слово «левитация» происходит от английского «levitate», которое можно перевести как «парить» или «подниматься в воздух». Фактически, данное физическое явление позволяет преодолеть гравитацию без применения реактивной тяги или аэродинамики, как это осуществляется самолетами, вертолетами и дронами.

Почему происходит магнитная левитация

С физической точки зрения левитация является устойчивым положением объекта в гравитационном поле. Фактически, сила тяжести компенсируется с силами воздействующими на предмет, которые его поднимают. В определенной точке данные силы уравниваются, благодаря чему объекты зависают. То понятие, которое укладывается в слово «левитация» в чистом виде недостижимо, что давно является доказанным фактом. На деле парение объекта достигается только путем воздействия на него магнитного поля. При этом сам предмет, который зависает в воздухе, не обладает свойствами парить без внешнего воздействия. Он не сможет делать это абсолютно в любых условиях и на разной высоте.

Условия, которые необходимо обеспечить, чтобы осуществить магнитную левитацию, могут отличаться. Существует несколько технологий, которые позволяют добиться эффекта парения:

  • Электромагнитная.
  • Диамагнитная.
  • Сверхпроводниковая.
  • Вихретоковая.
Электромагнитная

Данная технология подъема объекта над поверхностью подразумевает применение . Он располагается в нижней части устройства. На него укладываются легкие металлические предметы. Над электромагнитом с помощью стойки закрепляется фотоэлемент. Задача последнего заключается в подачи и прерывания питания на электрический магнит. Если фотоэлемент улавливает тень, то он включает или отключает питание, что зависит от места его расположения. Это происходит с периодичностью в доли секунды.

Принцип работы данной технологии подразумевает создание кратковременного воздействия электромагнитного поля на металлический объект. Катушка его подталкивает, после чего отключается, и предмет начинает падать вниз. Сразу же катушка снова создает электромагнитное поле поднимающее объект, и он взлетает. Цикличное воздействие необходимо для того, чтобы обеспечить возможность контроля местоположения парящего предмета. Дело в том, что постоянное электромагнитное поле смещает объект, пока он не выйдет из зоны воздействия и не упадет под влиянием силы притяжения. Если же циклично включать и отключать поле, то предмет будет просто подскакивать, фактически не удаляясь от точки нахождения.

При взгляде со стороны благодаря высокой частоте подачи и отключения электромагнитного воздействия, парящий предмет выглядит практически неподвижным. Это создает впечатление его реальной левитации. Данная технология является весьма популярной при производстве сувениров. Примером ее реализации является летающий глобус. Недостаток данного способа заключается в определенной сложности запуска устройства. Необходимо закрыть фотодатчик, приподнять предмет для левитации, после чего открыть систему фотодатчика. Далее он возьмет контроль удержания предмета на себя. В том случае, если произойдут перебои с электричеством и объект упадет, то после подачи питания он уже не взлетит без вмешательства человека.

Диамагнитная

Для реализации данной технологии применяются диамагнетики. Эти вещества намагничиваются против внешнего магнитного поля. Отдельные материалы могут полностью вытеснять свое магнитное поле. Примером такого вещества является графит. Довольно известным экспериментом является магнитная левитация стержня из обычного карандаша. Он зависает над неодимовыми магнитами. Для этого их необходимо расставить в шахматном порядке поворачивая разными полюсами к верху. При таких условиях стержень не будет вытолкнут за пределы площадки, поэтому останется левитировать постоянно. Неодимовые магниты имеют более стабильное поле, поэтому если созданная поверхность в шахматном порядке будет иметь достаточную площадь, касательно длины графитового стержня, то тот зависнет неподвижно.

Живые существа тоже обладают свойствами диамагнетиков, поэтому под воздействием магнитного поля с высокой индукцией также могут парить. Примером этого является научный эксперимент с летающей лягушкой. Для некрупного земноводного достаточно создать индукцию больше 16 Тл, и лягушка начинает парить в воздухе на небольшой высоте.

Сверхпроводниковая

Магнитная левитация по данной технологии также известна как метод Мейснера. Эффект парения достигается путем размещения магнита над сверхпроводником. В его качестве применяется оксид иттрия-бария-меди. Данное вещество приобретает способность сверхпроводника при снижении его температуры. Для этого необходимо обеспечение его контакт с жидким азотом.

Эксперимент по левитации подразумевает помещение пластины в ванночку с жидким азотом. Оксид иттрия-бария-меди практически мгновенно охлаждается. Если над ним поместить магнит, то тот начнет левитировать. Высота между магнитом и сверхпроводником напрямую зависят от силы индукции. Чем она выше, тем на большем расстоянии окажется магнит. Предмет как бы всплывает над сверхпроводником и весьма устойчиво парит до момента, пока пластина не остынет, потеряв свои свойства.

Вихретоковая магнитная левитация

Еще одним способом создания магнитной левитации является использование вихревых токов и массивных проводников. Катушка, выдающая вихревой ток может левитировать над замкнутым кольцом из цветного металла. Аналогичная ситуация наблюдается и с дисками из данного металла, уложенными над большими катушками.

Это обусловлено тем, что по закону Ленца индексируемый в данном случае цветной металл будет создавать магнитное поле противоположное от того, что на него воздействует. Иными словами, в каждый период колебания переменного тока в катушке будет создаваться противоположное по направлению магнитное поле. Поскольку они отталкивают друг друга, то более легкий предмет будет левитировать над тяжелым.

Еще одним примером вихревой левитации является пропускание неодимового магнита через толстостенную медную трубу. В этом случае постоянное парение не происходит, но магнит замедляется. Его падение сквозь трубу напоминает замедленную съемку или погружение в густую жидкость.

Масштабные применение эффекта парения

Магнитная левитация нашла свое применение не только при создании сувениров. Одним из самых масштабных способов использования данной технологии является современный железнодорожный транспорт на магнитной подушке. Такой поезд двигается очень тихо, поскольку не имеет колес, которые создают трение и стук. Как следствие самый известный проект такого транспорта, который был построен в Японии, смог развить скорость в 581 км/час. Единственный в мире поезд, который работает по данной технологии на постоянном маршруте, располагается в Шанхае. Он соединяет метро и аэропорт. Поезд позволяет преодолевать расстояние в 30 км между конечными станциями приблизительно за 7 минут.