Коэффициент гармоник усилителя

Содержание

FAQ по Звуку

Что такое FAQ?

FAQ (Frequently Asked Questions) — часто задаваемые вопросы. FAQ по звуку — часто задаваемые вопросы о звуке.

Как читать этот FAQ?

Для удобства читателей, ответ на каждый вопрос разбит на три категории по степени сложности материала.

Н: Новичок — ещё многого не знает и не слишком хочет разбираться в мудрёных терминах.

П: Продвинутый — владеет основами обращения с техникой, в том числе с компьютером, и хочет всё знать.

З: Задвинутый — думает, что знает всё и любит докапываться до всяких научных и псевдонаучных мелочей. 🙂

Тем самым мы постарались избежать перекрёстных обвинений в чрезвычайной простоте при одновременной сложности изложения материала.

Что такое звук?

Н: Звук — это всё то, что мы слышим ушами.

П: Звук — это невидимые глазом волны, которые распространяются в воздухе, чаще всего из-за того, что где-то происходят колебания. С помощью нервных окончаний в нашем ухе мы их и слышим.

З: Звуковые волны — это физическое явление, происходящее в различных агрегатных состояниях вещества. При распространении имеют конечную скорость, характеризующую сжимаемость среды. Скорость распространения малых возмущений в общем случае равна: . Для адиабатических и изоэнтропических процессов , где k — показатель адиабаты. В каждом элементарном объёме при этом происходит колебание избыточного давления. Энергия звуковой волны характеризуется акустическим давлением и интенсивностью звука. Звуковым волнам присущи все волновые свойства. Это выражается, например, в возникновении явлений интерференции и дифракции при их распространении.

Что такое громкость звука?

Н: Делая громче или тише свой магнитофон или телевизор, мы изменяем громкость с помощью ручки с надписью «громкость».

П: Громкость — это кажущаяся сила звука. Для оценки громкости заумные дяди придумали специальную единицу измерения и назвали её децибел (не путать с «децл» и «дебил»). Это — относительная величина, показывающая насколько увеличилась или уменьшилась громкость звука. Если принять за ноль еле слышимые звуки, то можно привести такую таблицу:

Громкость звука Уровень громкости, дБ
Граница слуха 0
Шепот 20
Разговорная речь 50
Шум улицы 80
Взлёт самолёта 120

З: Кажущуюся громкость звука оценивают её уровнем: . Согласно психо-физическому закону Вебера-Фехнера, эта величина для человека прямо пропорциональна субъективному ощущению изменения громкости. Где — интенсивность звука, — плотность, a — скорость звука. Но чаще измеряют уровень громкости через звуковое давление: . L < 0 означает ослабление звука, L > 0 — его усиление.

Что такое высота звука?

Н: Высокий звук это когда поют птички: пи-пи-пи-пи-пи. Звук средней высоты это разговор людей: ла-ла-ла-ла-а. Низкий звук это когда рычит медведь: рэ-э-э-ы-ы.

П: К примеру, если дернуть за струну на гитаре, она начнет колебаться и колебать окружающий ее воздух. Чем больше число колебаний, тем выше звук. Количество этих колебаний в секунду, называют частотой и измеряют в Герцах .

З: Взглянем на график колебания во временнОй области — U(t). Наибольшее среднее значение напряжения — это амплитуда сигнала, A. Временной диапазон между двумя соседними колебаниями носит название периода (Т). Величина, обратная периоду, называется частотой: .

  • область слышимых частот
  • инфразвук
  • ультразвук

Что такое тембр звука?

Н: То, чем отличается в Вашем любимом сериале голос Хуаниты, от ее злобной соперницы Канчиты.

П: Возьмем звук одинаковой высоты, сыгранный на двух разных музыкальных инструментах — на трубе и на фортепиано. На слух он будет отличаться по ряду характерных признаков. Их совокупность называется тембром.

Давайте вспомним наши ощущения при вращении ручки «громкость» на аудио аппаратуре. С изменением громкости субъективно меняется тембр. На советской аппаратуре была кнопка «тон корректор». Она выправляла ощущение громкости звуков разной частоты, в соответствии с психо-физическими особенностями восприятия.

В жизни мы часто сталкиваемся с понятием регулятор тембра, в том числе эквалайзер. Этот термин имеет немного другой смысл. Регулятор тембра и эквалайзер раздельно регулируют громкость различных частотных составляющих звука.

З: Рассмотрим фрагменты графиков записей двух музыкальных инструментов — трубы и фортепиано:

Они были получены перезаписью через кодек ноты ля первой октавы в WAV редакторе. Воспроизведением занималась звуковая карта SoundBlaster Live! со стандартным 8 МБ банком памяти (GM-инструмент №56 Trumpet и GM-инструмент №0 Acoustic Grand Piano). Период основного колебания характеризует высоту звука, а вид определяет тембральную окраску.

Какой путь проходит звук?

Н: Сначала Ваш любимый «певун» завывает на звукозаписывающей студии в микрофон. Потом, этот звук обрабатывается и записывается на компакт-диск. Купив этот компакт в киоске и поставив запись в свой любимый пузатый «бумбоксик», Вы слушаете то, что осталось от музыки (если она там, конечно, была).

П: При помощи микрофона звуковые волны преобразуются в электрический сигнал. Либо звуки синтезируются модуляцией напряжением или током на электромузыкальных инструментах. А также в компьютерах, сразу же получаясь в цифровом виде (семплерные технологии). Этот сигнал проходит через ряд устройств (компрессор, лимитер, эквалайзер, ревербератор), как железных, так и виртуальных. Впоследствии все оцифрованные звуки в современной студии суммируются («сводятся») в один звуковой файл, который подготавливается и записывается на CD-DA. При проигрывании на бытовом Hi-Fi CD-плеере цифровой сигнал преобразуется в аналоговый ЦАП-ом (цифро-аналоговым преобразователем) и, после усиления, подаётся на акустические системы. Последние преобразуют электрический сигнал обратно в звуковые колебания. Заумные весь этот путь называют звуковым трактом. Не исключено, что пройдя через все эти составляющие, качество звука, получаемого в конечном итоге, будет значительно отличаться от первоначального (по крайней мере, не улучшится). В какой мере — зависит от качества абсолютно всех звеньев этой цепи. К примеру, при покупке колонок мы отдаем предпочтение той системе, которая звучит «чище», определяя это «на слух». Заумные придумали некоторые стандартные показатели для измерения степени ухудшения звука (АЧХ, SNR, THD, и т.д.). Но никакие мудреные интегральные показатели не могут служить основанием для заочного суждения о «звучании» какого либо устройства.

З: В компьютере располагаются обрабатывающая и воспроизводящая часть звукового тракта. Самым качественным форматом кодирования звуковых данных на сегодня в общем случае является PCM (pulse code modulation — импульсно кодовая модуляция). Чаще всего этот формат на PC хранят в файлах с расширением wav. Но само по себе расширение wav не является гарантией PCM, это может быть и файл с данными в формате MPEG Layer 3 (в просторечье «MP3»).

Что такое Амплитудно-частотная Характеристика (АЧХ)?

Н: Это одни из загадочных циферок (к примеру, 20-20000), которые Вы видите на последней странице в руководстве пользователя. Не обращайте на них особого внимания. 🙂

П: При рассмотрении АЧХ обратите особое внимание не на нижнюю и верхнюю границы воспроизводимых частот, а на величину неравномерности. Большая величина неравномерности приводит сильному к искажению тембра звучания. Если приведён график, то в первую очередь важно, что бы он был как можно ровней без резких взлетов и провалов. На высоких частотах в провалах звук будет тусклым, не ясным, в подъемах — присутствие раздражающих неприятных шипящих и свистящих призвуков. На низких частотах в провалах звук теряет «насыщенность», а в подъемах возникает ощущение «бубнящего» звучания и «гудения».

В высококачественных звуковых системах неравномерность АЧХ в рабочем диапазоне частот составляет не более +1..-1 дБ. Для компьютерных колонок +10..-10 дБ — вполне приемлемые цифры.

З: Рассмотрим типичную АЧХ дешевой пластмассовой колонки (по оси абсцисс в логарифмическом масштабе отложена частота, по оси ординат — относительная амплитуда):

По нему ясно, что акустическая система имеет наименьшие искажения в полосе частот от 100 до 10 000 Гц. Человеческая речь имеет диапазон от 80 до 10 000 Гц, а, к примеру, диапазон симфонического оркестра от 30 до 20 000 Гц. Отсюда видно, что данная акустическая система пригодна в лучшем случае для прослушивания человеческой речи. Разумеется, это не говорит о том, что музыку, исполняемую симфоническим оркестром, нельзя будет слушать на данной системе. Просто такое звучание будет ненатуральным.

Так как амплитуда сигнала, измеренная в логарифмах, величина относительная, цифру 0 по оси амплитуды можно поставить где угодно. К примеру, в -80 дБ (по отношению к 0 на данном графике). Потом можно гордо писать в паспорте, что акустика имеет диапазон воспроизводимых частот 20-20000 Гц — и это действительно так. Только вот неравномерность +90 дБ будет очень трудно объяснить, поэтому неравномерность в таких случаях просто не указывается!

Что такое THD?

Н: Страшная аббревиатура, которой Вас хотят запутать. Но не пугайтесь, это всего лишь цифры. И если Вы действительно не испугались, наслаждайтесь звуком (или тем, что от него осталось при указанных в паспорте THD).

П: Это оценка нелинейных искажений. THD — это довольно осредненный показатель, который не определяет однозначно качество звучания, т.е. аппаратура даже с одним и тем же значением THD может звучать по-разному. Аббревиатура Hi-Fi (высокая верность) подразумевает: чем меньше искажений, тем лучше звучание. Требования по THD в Hi-Fi системах: не более 1,5% (на частоте 1000 Гц).

З: Это некий интегральный показатель, который характеризует нелинейные искажения для данной системы. Для акустических систем характерно применение фильтра для измеряемого сигнала, при подачи тестового сигнала (обычно синусоида частотой 1 кГц), с целью измерения всех дополнительных гармоник, возникающих из-за нелинейности системы. Обычно измеряют мощность второй и третьей гармоник, как вносящих наиболее существенный вклад. Для перевода из процентов в децибелы используют следующую формулу:

X = 20 log (X / 100)

Что такое шумы (SNR)?

Н: Шумы — это когда пш-ш-ш-ш-ш, и это плохо. Чем меньше пш-ш-ш-ш-ш, тем лучше.

П: Шумы можно представить как некий случайный звуковой сигнал малой громкости, который примешан к основному (изначальному) сигналу.

Отношение сигнал/шум (SNR) показывает превышение уровня сигнала над уровнем шума. Шумы можно также разложить по частотам. В области средних частот шумы наиболее заметны на слух. Наименее неприятен шум, равномерно распределенный по всем частотам (белый шум).

Человек имеет от природы способность отфильтровывать сигнал от шумов, поэтому шумы не так неприятны для восприятия, как искажения (см. THD). Отношение сигнал/шум (SNR) измеряется в дБ.

З: Для показателя SNR можно привести следующую ориентировочную табличку:

10-20 дБ Абонентская радиоточка, телефон
20-50 дБ Колоночки для плеера
50-60 дБ Переносные радиоприёмники, 8 битные звуковые карты
60-80 дБ Hi-Fi аппаратура
80-100 дБ Студийная и Hi-End аппаратура

Существует некоторое разночтение в понятии сигнал/шум. Фирмы производители любят указывать вместо SNR немного другой показатель, а именно — уровень шумов при отсутствии сигнала (Zero Signal Noise). Чем плохо такое измерение? А тем, что производителям достаточно легко реализовать внутри аппаратуры так называемый «гейт». Скажем, при уровне входного сигнала -80 дБ сработает выключатель, и уровень шумов падает до фантастических величин, на гране реальности. Отсюда все заявления о 96-97 дБ SNR в дешевой аппаратуре. На поверку, при подаче сигнала с небольшим уровнем, эти характеристики резко падают, становясь хуже на 20 дБ (а то и все 30!).

Коэффициент Нелинейных Искажений + Шум (THD+N)

Н: Чем больше THD+N, тем хуже качество в общем случае.

П: Этот показатель объединяет два предыдущих и существует для одновременной оценки уровня шумов и коэффициента нелинейных искажений.

З: THD+N — это более удачный показатель для цифровой аппаратуры, так как не позволяет выбрать наилучший уровень сигнала для SNR и для THD по отдельности.

Мощность

Н: Мощность — это не громкость.

П: Указанное производителем значение мощности не имеет особого практического смысла при выборе аппаратуры в магазине. Если Вы до конца не представляете, что она обозначает, не смотрите на мощность вовсе. Например, про акустическую систему можно сказать: ее мощность равна 10 Вт. Или: ее мощность равна 1000 Вт. Оба значения будут правильными. В первом случае мощность может быть указана «в RMS», а во втором «в PMPO». Поэтому не надо воспринимать близко к сердцу значение мощности, указанное в PMPO. Если попытаться хоть как-то сравнить два устройства по их мощностным характеристикам, то особое внимание следует обратить на уровень искажений (THD) при измерении мощности. Например, набор колонок 300 Вт RMS при 10% THD будет менее предпочтителен и, с очень большой вероятностью, будет звучать много хуже, чем колонки мощностью всего лишь 50 Вт RMS при 0,1% THD.

З: Подробнее см. статью «Особенности стандартов, описывающих мощность в звукотехнике».

Динамический диапазон (DR)

Н: Разница между самым тихим и самым громким звуками.

П: Для аудио аппаратуры это запас по динамике звука между порогом из шумов и началом перегрузки акустических систем и усилителя. Для уменьшения динамического диапазона и облегчения воспроизведения музыки и речи на дешевой аппаратуре, применяют так называемую компрессию звука (не путать со сжатием размера звукового файла). Таким образом, поп и рок музыка звучит довольно сносно даже на дешевой бытовой аппаратуре и компьютерных колоночках, т.к. динамический диапазон подобных записей очень «узкий» — не больше 10-15 дБ. Для классики значение динамического диапазона значительно «шире» — около 50 дБ. Соответственно, требования ко всему звуковому тракту для «серьёзной музыки» гораздо выше.

З: Для цифровой аппаратуры — это максимальный SNR, где шумами считаются шумы квантования в теории и порог из цифровых шумов дизеринга и субгармонических искажений (noise floor + harmonic distortion) на практике. Для акустической системы — это чувствительность, . Для усилителей — это, если грубо, линейная часть кривой усиления.

>Амплитудно-частотная характеристика усилителя

Что такое амплитудно-частотная характеристика усилителя

График Амплитудно-частотной характеристики показывает баланс громкости частот. Если мы будем производить синус конкретной частоты и фиксировать уровень сигнала на выходе, то перебрав частоты с 20 Гц по 20 кГц — получим исходный график АЧХ.
Как правило, АЧХ усилителей представляет собой прямую, в редких случаях можно наблюдать подъем или спад в конкретной области частот (но такое бывает, например у Dr.Dac nano с повышением уровня низких частот).
При подключении наушников к усилителю, итоговая АЧХ меняется в соответствии с импедансом наушников и полного выходного сопротивления усилителя.
В целом, когда идет речь о изменении АЧХ усилителя или наушников, подразумевается суммарное общее изменение АЧХ, но в контексте изменение приписывается тому устройству, о котором изначально идет речь. Если говорим о усилителе, то подразумеваем изменение АЧХ усилителя, а если говорим о наушниках, то подразумеваем изменение АЧХ наушников.
Чем выше и ровнее импеданс наушников и чем ниже и ровнее сопротивление усилителя, тем меньше изменений происходит в АЧХ усилителя.

Как измеряется АЧХ

Существует много способов для измерения АЧХ, одним из самых быстрых является мультитоновый сигнал, используемый в Audio Presition и RMAA. Помимо него можно измерять с помощью импульсного сигнала, скользящего синуса или шумового сигнала. Выбор сигнала зависит допусков на погрешность и скорости измерения.

АЧХ усилителя определяет характер изменения коэффициента усиления или выходного сигнала усилителя при изменении частоты сигнала.
АЧХ представляет собой график зависимости выходного напряжения (или коэффициента усиления), величина которого откладывается по оси ординат, от частоты, откладываемой по оси абсцисс (рис. 5.2). Для частоты используется логарифмический (нелинейный) масштаб. Это приводит к эффективному расширению низкочастотного и сжатию высокочастотного участков на оси частот.
Коэффициент усиления и выходной сигнал усилителя постоянны в диапазоне средних частот, но спадают при высоких и низких частотах. Область частот, заключенная между частотами f1 и f2, называется полосой пропускания усилителя. Частоты f1 и f2 соответствуют точкам a1 и a2, и известным как точки по уровню 3 дБ (децибел). Децибел — нелинейная (логарифмическая) единица измерения коэффициента усиления (см. приложение 2). Точка a1 называется нижней точкой по уровню 3 дБ, а точка a2 — верхней точкой по уровню 3 дБ. В этих двух точках выходное напряжение усилителя составляет 70% от своего максимального значения. Точки по уровню 3 дБ называют также точками по уровню половинной мощности, поскольку выходная мощность усилителя на этих частотах уменьшается ровно в два раза.

Рис. 5.2 Амплитудно-частотная характеристика усилителя.

Выходное напряжение (или коэффициент усиления) удобно откладывать по оси ординат в децибелах, принимая максимальный уровень за 0 дБ. Тогда точки по уровню 3 дБ будут находиться на уровне – 3 дБ.

АЧХ усилителя звуковой частоты (УЗЧ)
Чтобы обеспечить усиление сигналов всех звуковых частот, УЗЧ должен иметь полосу пропускания, перекрывающую диапазон звуковых частот, т. е. от 20 Гц до 20 кГц. Внутри этого диапазона частот коэффициент усиления УЗЧ должен сохранять постоянное значение. Ниже 20 Гц и выше 20 кГц допустим спад усиления. Типичная АЧХ усилителя звуковой частоты показана на рис. 5.2.

Поскольку музыка и речь представляют собой сложную смесь гармонических сигналов с различными частотами звукового диапазона, то качество усилителя зависит от того, какую полосу этих частот и их гармоник данный усилитель может воспроизвести без искажений. Узкая полоса пропускания будет обязательно приводить к ограничению числа усиливаемых и воспроизводимых на выходе усилителя гармоник. Этим объясняется низкое качество звука у дешевых усилителей.

Существуют два основных типа искажений: амплитудные и частотные.

Амплитудные искажения
Для каждого усилителя существует некоторый максимальный уровень выходного сигнала, который не может быть превышен. Попытка превышения этого уровня приводит к амплитудным искажениям. Амплитудные искажения проявляются в сглаживании или обрезании только одного (положительного или отрицательного) или обоих пиков сигнала.

Рис. 5.3 Амплитудные искажения.

На рис. 5.3 представлены три варианта проявления амплитудных искажений синусоидального сигнала на выходе перегруженного усилителя.

Частотные искажения
Усилители должны воспроизводить на своем выходе входной сигнал без каких-либо изменений его формы, не считая увеличения амплитуды. Обычно входной сигнал имеет сложную форму и состоит из большого числа синусоидальных сигналов различных частот и их гармоник. Для верного воспроизведения все эти составляющие должны усиливаться в одинаковой степени, то есть коэффициент усиления должен быть одинаковым для всех частот. Другими словами, АЧХ усилителя должна быть достаточно плоской во всей полосе пропускания, в противном случае выходной сигнал будет подвержен частотным искажениям.
Например, усилитель с АЧХ, показанной на рис. 5.4, будет в гораздо большей степени усиливать высокие частоты по сравнению с низкими. В результате в выходном сигнале будут чрезмерно представлены высокочастотные составляющие.

Рис. 5.4

Можно сказать, что сигнал на выходе данного усилителя воспроизводится с частотными искажениями.

>Коэффициент нелинейных искажений

Коэффицие́нт нелине́йных искаже́ний (КНИ или KН) — величина для количественной оценки нелинейных искажений.

Определение

Коэффициент нелинейных искажений равен отношению среднеквадратичной суммы спектральных компонент выходного сигнала, отсутствующих в спектре входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала

K H = U 2 2 + U 3 2 + U 4 2 + … + U n 2 + … U 1 2 + U 2 2 + U 3 2 + … + U n 2 + … {\displaystyle K_{\mathrm {H} }={\frac {\sqrt {U_{2}^{2}+U_{3}^{2}+U_{4}^{2}+\ldots +U_{n}^{2}+\ldots }}{\sqrt {U_{1}^{2}+U_{2}^{2}+U_{3}^{2}+\ldots +U_{n}^{2}+\ldots }}}}

КНИ — безразмерная величина и выражается обычно в процентах. Кроме КНИ, уровень нелинейных искажений часто выражают и через коэффициент гармонических искажений (КГИ или KГ) — величину, выражающую степень нелинейных искажений устройства (усилителя и др.) и равную отношению среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

K Γ = U 2 2 + U 3 2 + U 4 2 + … + U n 2 + … U 1 {\displaystyle K_{\Gamma }={\frac {\sqrt {U_{2}^{2}+U_{3}^{2}+U_{4}^{2}+\ldots +U_{n}^{2}+\ldots }}{U_{1}}}}

КГИ, так же, как и КНИ, выражается в процентах и связан с ним соотношением

K Γ = K H 1 − K H 2 {\displaystyle K_{\Gamma }={\frac {K_{\mathrm {H} }}{\sqrt {1-K_{\mathrm {H} }^{2}}}}}

Очевидно, что для малых значений КГИ и КНИ совпадают в первом приближении. Интересно, что в западной литературе обычно пользуются КГИ, тогда как в отечественной литературе традиционно предпочитают КНИ.

Важно также отметить, что КНИ и КГИ — это лишь количественные меры искажений, но не качественные. Например, значение КНИ (КГИ), равное 3% ничего не говорит о характере искажений, т.е. о том, как в спектре сигнала распределены гармоники, и каков, например, вклад НЧ или ВЧ составляющих. Так, в спектрах ламповых УМЗЧ обычно преобладают низшие гармоники, что часто воспринимается на слух как «тёплый ламповый звук», а в транзисторных УМЗЧ искажения более равномерно распределены по спектру, и он более плоский, что часто воспринимается как «типичный транзисторный звук» (хотя спор этот во многом зависит от личных ощущений и привычек человека).

Примеры расчёта КГИ

Для многих стандартных сигналов КГИ может быть подсчитан аналитически. Так, для симметричного прямоугольного сигнала (меандра)

K Γ = π 2 8 − 1 ≈ 0.483 = 48.3 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{2}}{8}}-1\,}}\approx \,0.483\,=\,48.3\%}

Идеальный пилообразный сигнал имеет КГИ

K Γ = π 2 6 − 1 ≈ 0.803 = 80.3 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{2}}{6}}-1\,}}\approx \,0.803\,=\,80.3\%}

а симметричный треугольный

K Γ = π 4 96 − 1 ≈ 0.121 = 12.1 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{4}}{96}}-1\,}}\approx \,0.121\,=\,12.1\%}

Несимметричный прямоугольный импульсный сигнал с соотношением длительности импульса к периоду, равному μ обладает КГИ

K Γ ( μ ) = μ ( 1 − μ ) π 2 2 sin 2 ⁡ π μ − 1 , 0 < μ < 1 {\displaystyle K_{\Gamma }\,(\mu )={\sqrt {{\frac {\mu (1-\mu )\pi ^{2}\,}{2\sin ^{2}\pi \mu }}-1\;}}\,,\qquad 0<\mu <1},

который достигает минимума (≈0.483) при μ=0.5, т.е. тогда, когда сигнал становится симметричным меандром. Кстати, фильтрованием можно добиться значительного снижения КГИ этих сигналов, и таким образом получать сигналы, близкие по форме к синусоидальным. Например, симметричный прямоугольный сигнал (меандр) с изначальным КГИ в 48.3%, после прохождения через фильтр Баттерворта второго порядка (с частотой среза, равной частоте основной гармоники) имеет КГИ уже в 5.3%, а если фильтр четвёртого порядка — то КГИ=0.6%. Следует отметить, что чем более сложный сигнал на входе фильтра и чем более сложный сам фильтр (а точнее, его передаточная функция), тем более громоздкими и трудоёмкими будут вычисления КГИ. Так, стандартный пилообразный сигнал, прошедший через фильтр Баттерворта первого порядка, имеет КГИ уже не 80.3% а 37.0%, который в точности даётся следующим выражением

K Γ = π 2 3 − π c t h π ≈ 0.370 = 37.0 % {\displaystyle K_{\Gamma }\,=\,{\sqrt {{\frac {\,\pi ^{2}}{3}}-\pi \,\mathrm {cth} \,\pi \,}}\,\approx \,0.370\,=\,37.0\%}

А КГИ того же сигнала, прошедшего через такой же фильтр, но второго порядка, уже будет даваться достаточно громоздкой формулой

K Γ = π c t g π 2 ⋅ c t h 2 π 2 − c t g 2 π 2 ⋅ c t h π 2 − c t g π 2 − c t h π 2 2 ( c t g 2 π 2 + c t h 2 π 2 ) + π 2 3 − 1 ≈ 0.181 = 18.1 % {\displaystyle K_{\Gamma }\,={\sqrt {\pi \,{\frac {\,\mathrm {ctg} \,{\dfrac {\pi }{\sqrt {2\,}}}\cdot \,\mathrm {cth} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}-\,\mathrm {ctg} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}\cdot \,\mathrm {cth} \,{\dfrac {\pi }{\sqrt {2\,}}}-\,\mathrm {ctg} \,{\dfrac {\pi }{\sqrt {2\,}}}-\,\mathrm {cth} \,{\dfrac {\pi }{\sqrt {2\,}}}\;}{{\sqrt {2\,}}\left(\mathrm {ctg} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}+\,\mathrm {cth} ^{2\!}{\dfrac {\pi }{\sqrt {2\,}}}\!\right)}}\,+\,{\frac {\,\pi ^{2}}{3}}\,-\,1\;}}\;\approx \;0.181\,=\,18.1\%}

Если же рассматривать вышеупомянутый несимметричный прямоугольный импульсный сигнал, прошедший через фильтр Баттерворта p-го порядка, то тогда

K Γ ( μ , p ) = csc ⁡ π μ ⋅ μ ( 1 − μ ) π 2 − sin 2 π μ − π 2 ∑ s = 1 2 p c t g π z s z s 2 ∏ l = 1 l ≠ s 2 p 1 z s − z l + π 2 R e ∑ s = 1 2 p e i π z s ( 2 μ − 1 ) z s 2 sin ⁡ π z s ∏ l = 1 l ≠ s 2 p 1 z s − z l {\displaystyle K_{\Gamma }\,(\mu ,p)=\csc \pi \mu \,\cdot \!{\sqrt {\mu (1-\mu )\pi ^{2}-\,\sin ^{2}\!\pi \mu \,-\,{\frac {\,\pi }{2}}\sum _{s=1}^{2p}{\frac {\,\mathrm {ctg} \,\pi z_{s}}{z_{s}^{2}}}\prod \limits _{\scriptstyle l=1 \atop \scriptstyle l\neq s}^{2p}\!{\frac {1}{\,z_{s}-z_{l}\,}}\,+\,{\frac {\,\pi }{2}}\,\mathrm {Re} \sum _{s=1}^{2p}{\frac {e^{i\pi z_{s}(2\mu -1)}}{z_{s}^{2}\sin \pi z_{s}}}\prod \limits _{\scriptstyle l=1 \atop \scriptstyle l\neq s}^{2p}\!{\frac {1}{\,z_{s}-z_{l}\,}}\,}}}

где 0<μ<1 и

z l ≡ exp ⁡ i π ( 2 l − 1 ) 2 p , l = 1 , 2 , … , 2 p {\displaystyle z_{l}\equiv \exp {\frac {i\pi (2l-1)}{2p}}\,,\qquad l=1,2,\ldots ,2p}

подробности вычислений — см. Ярослав Благушин и Эрик Моро.

Дополнительные ссылки

  • ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КАНАЛА ЗВУКОПЕРЕДАЧИ
  • Коэффициент нелинейных искажений (КНИ / THD / THDI)
  • Главная страница
  • Усилители
  • Характеристики усилителей

При выборе усилителя мощности покупатели часто допускают похожую ошибку, полагая, что указанные в паспорте технические характеристики позволят им понять, какого звука стоит ожидать от приобретаемого усилителя. Дело в том, что основные параметры не отражают «характер» усилителя, хотя бы потому, что они измерены в рафинированных лабораторных

условиях и вообще могут быть недостоверными. Равные по техническим характеристикам усилители могут звучать по-разному. А бывает, что усилитель с худшими характеристиками звучит гораздо лучше. Можно сделать предположение, что эти явления в основном связаны с субъективным восприятием звукового поля разными людьми. Однако правильнее предположить, что если при одинаковых «цифрах» имеются различия, это означает, что что-то измерить попросту забыли. В итоге получается, что оценивать усилитель по основным характеристикам – все равно, что оценивать человека лишь по его физическим параметрам.

К основным характеристикам усилителя мощности звуковой частоты относятся:
  1. Выходная мощность.
  2. Частотный диапазон.
  3. Коэффициент гармонических искажений.
  4. Отношение сигнал / шум.
  5. Демпинг-фактор (или коэффициент демпфирования).
Дополнительно могут указываться:
  1. Коэффициент интермодуляционных искажений.
  2. Скорость нарастания выходного напряжения.
  3. Перекрестные помехи.

Разумеется, в паспорте присутствуют и немаловажные эксплуатационные характеристики:

  1. Напряжение питания.
  2. Максимальная потребляемая мощность.
  3. Масса.
  4. Габаритные размеры.
Выходная мощность

Данный параметр имеет множество разновидностей и методик измерения, и некоторые производители используют это в рекламных целях, намеренно не указывая условия, при которых выходная мощность была измерена. Именно поэтому покупатель недоумевает, сравнивая в магазине крохотный музыкальный центр с наклейкой 2х1000W и увесистый усилитель мощности внушительных размеров с характеристикой 30 Вт на канал.

Для отечественных усилителей в основном использовались такие характеристики, как номинальная и максимальная выходная мощность:

Номинальная мощность – выходная мощность усилителя при заданном коэффициенте нелинейных искажений. Такая методика измерения предоставляет определенную свободу выбора изготовителю, который волен указать значение номинальной мощности, соответствующее наиболее выгодному значению нелинейных искажений. А ведь широко известно, что в усилителях класса АВ при малых уровнях выходной мощности, например 1Вт, уровень искажений может достигать огромных значений. Существенно уменьшаться он может только при увеличении выходной мощности до номинальной. В паспортах отечественными производителями указывались рекордные номинальные характеристики, с крайне низким уровнем искажений при высокой номинальной мощности усилителя. Тогда как наивысшая статистическая плотность музыкального сигнала лежит в диапазоне амплитуд 5-15% от максимального значения. Вероятно, поэтому советские усилители заметно проигрывали на слух западным, у которых оптимум искажений мог быть на средних уровнях громкости. В СССР же шла гонка за минимумом гармонических и иногда интермодуляционных искажений любой ценой на одном, номинальном (почти максимальном) уровне мощности.

Максимальная мощность – выходная мощность усилителя при ненормированном коэффициенте нелинейных искажений. Данный параметр является еще менее информативным, чем номинальная мощность и характеризует только запас прочности усилителя – способность работать длительное время при перегрузках по входу.

Среди зарубежных чаще всего используются характеристики RMS, PMPO и DIN POWER:

RMS (Root Mean Squared) – среднеквадратичное значение мощности при нормированном коэффициенте нелинейных искажений. Как правило, измерение проводится на 1 кГц при достижении коэффициента нелинейных искажений 10%. Этот показатель был заимствован из электротехники и, строго говоря, для описания звуковых характеристик непригоден. В музыкальных сигналах громкие звуки человек слышит лучше, чем слабые, поскольку на органы слуха воздействуют амплитудные значения, а не среднеквадратичные. Таким образом, усредненное значение будет мало о чем говорить. Стандарт RMS был одной из неудачных попыток описать параметры звуковой аппаратуры и имеет весьма ограниченное применение — усилитель, который выдает 10% искажений не на максимальной мощности нужно еще поискать. До достижения максимальной мощности, искажения не превышают зачастую сотых долей процента, а потом резко возрастают.

PMPO (Peak Music Power Output) — максимально достижимое пиковое значение сигнала независимо от искажений за минимальный промежуток времени (обычно за 10 mS). Как следует из описания, параметр PMPO — виртуальный и бессмысленный в практическом применении. Тем не менее, он очень часто встречается в описаниях на усилители, вводя в заблуждение многочисленных покупателей. В связи с этим можно лишь посетовать на отсутствие единых обязательных стандартов измерения выходной мощности и на недобросовестность производителей. 100 Вт PMPO зачастую соответствуют лишь 3 Вт номинальной мощности при 1% КНИ.

DIN POWER — значение выдаваемой на реальной нагрузке мощности при нормированном коэффициенте нелинейных искажений. Измерения проводятся в течении 10 минут с помощью сигнала частотой 1 кГц при достижении 1 % КНИ.

Данный параметр наиболее адекватно характеризует выходную мощность усилителя. Иногда он встречается в паспорте усилителя под обозначением IEJA. Его разновидность IHF определяет выходную мощность при 0,1% КНИ.

Строго говоря, есть и многие другие виды измерений, например, DIN MUSIC POWER, описывающая мощность не синусоидального, а музыкального сигнала. В последнее время из-за отсутствия единого стандарта производители стараются указывать выходную мощность вкупе с другими характеристиками, при которых она измерена. Например,

650 W (8 Ω, 20 – 20000 Hz, 0,1% THD)
750 W (8 Ω, 1000 Hz, 0,1% THD)

Учитывая тот факт, что музыкальный сигнал имеет большой частотный и динамический диапазон, правильнее проводить измерения с помощью музыкальных сигналов. И указывать не номинальную мощность, а график зависимости коэффициента нелинейных искажений от выходной мощности.

Можно добавить, что каждый усилитель рассчитан на определенное сопротивление нагрузки. Тем не менее, оно может варьироваться, и в технических паспортах указываются основные параметры для каждого допустимого сопротивления.

Частотный диапазон

Практически любой современный усилитель мощности звуковой частоты способен усиливать сигналы с частотой, выходящей далеко за рамки слышимого диапазона. Поэтому указывать в чистом виде частотный диапазон, например, от 5 Гц до 100 кГц – совершенно бессмысленно.

Назначение усилителя мощности звуковой частоты (если он не имеет специального назначения, как, например, гитарный усилитель) – формирование на выходе электрического сигнала, по форме в точности повторяющего входной сигнал, но имеющего большую мощность. Так как музыкальный сигнал, даже если он формируется одним музыкальным инструментом, далек от гармонического, то минимизации коэффициента нелинейных искажений в усилителях для качественного воспроизведения звука, недостаточно. Необходимо, чтобы в диапазоне слышимых частот от 16 до 20000 Гц амплитудно-частотная и фазо-частотная характеристики усилителя были абсолютно горизонтальными. На практике, этого добиться не удается, да и акустическая система имеет АЧХ с более существенными провалами и подъемами.

Частотный диапазон указывается при нормированной неравномерности амплитудно-частотной характеристике, выраженной в относительных величинах. Самые удачные модели усилителей имеют неравномерность АЧХ +/-0,1 дБ в диапазоне от 20 до 20000 Гц. Если при измерении принять стандартную неравномерность амплитудно-частотной характеристики 3 дБ, то частотный диапазон составит 10 – 100000 Гц.

Коэффициент гармонических искажений

Искажения сигнала вызваны нелинейностью входных и выходных характеристик усилительных элементов и присущи любым усилителям мощности. Если подать на вход усилителя синусоидальный сигнал, то в спектре выходного сигнала, кроме основной гармоники, обнаружатся дополнительные, частота которых кратна частоте полезного сигнала. Такие гармоники являются паразитными и их мощность, как правило, невелика. Однако их суммирование с полезным сигналом приводит к существенному искажению его формы, и как следствие, искаженному звучанию.

Коэффициент гармонических искажений (Total Harmonic Distortion) показывает слышимую составляющую гармонических искажений в выходном сигнале и определяется как отношение суммарной мощности паразитных сигналов к мощности полезного гармонического сигнала. Как правило, измерения проводятся на частоте 1 кГц.

При замерах обращается внимание на спектральное распределение и характер искажений. Слышимость паразитных гармоник зависит от относительного уровня по отношению к тестовому сигналу, от порядка гармоники, от типа (четная/нечетная), а так же от того, на какой громкости прослушивается тестовый фрагмент.

Типовое значение THD для Hi-Fi усилителя составляет 0,1%. Однако, уже не раз отмечалось: усилитель с THD 0,001% может оказаться хуже по звуку, чем другой, с THD 0,1%. Дело в том, что при таких малых значениях этого параметра, искажения сложно проследить в форме выходного сигнала или ощутить на слух. Поэтому, разницы между 0,1% и 0,001% слышно не будет.

Отношение сигнал / шум

Отношение сигнал / шум определяется как отношение мощности полезного гармонического сигнала к мощности собственных шумов усилителя мощности. Данный параметр для современной звукоусилительной техники превышает значение 100дБ. Это означает, что мощность собственных шумов усилителя в 10 миллиардов раз меньше мощности полезного музыкального сигнала. Можно с уверенностью сказать, что в настоящее время этот параметр – лишь предмет гордости производителя. Он не имеет для пользователя никакого значения. Кто сможет ощутить различия между ОСШ 95 и 100 дБ?!

Демпинг-фактор (коэффициент демпфирования)

Коэффициент демпфирования определяется как отношение номинального сопротивления нагрузки к выходному сопротивлению усилителя и характеризует способность подавлять паразитные напряжения, которые возникают в динамических головках при движении катушки в магнитном поле. Если демпфирование недостаточно, то диффузор будет совершать свои собственные «телодвижения», никак не связанные с музыкой, но зависящие от упругости подвески. Необходимо отметить, что в подавляющем большинстве моделей акустических систем эта проблема успешно решается. Можно считать достаточным, если значение коэффициента превышает 100.

Демпфирование зависит не только от выходного сопротивления усилителя и сопротивления акустической системы. Необходимо учитывать, что способность поглощать возвращаемую громкоговорителем энергию зависит от индуктивностей фильтров и от сопротивления разъемов и кабеля, которым подключены акустические системы.

Минимальным значением коэффициента демпфирования можно считать 20, хорошим — 150-400. Современные усилители высокого класса имеют значение этого параметра 150 и выше.

Коэффициент интермодуляционных искажений

Нелинейность характеристик усилительных элементов приводит к возникновению нелинейных искажений. Большинство производителей усилителей измеряют и указывают в паспорте только коэффициент гармонических искажений (THD). Измерения проводятся с помощью гармонического сигнала. При подобном тестировании на выходе усилительного тракта появляются высшие гармоники, частота которых кратна частоте основного тона. Однако, как уже упоминалось, музыкальный сигнал далек от гармонического. Более того, любой музыкальный инструмент воспроизводит не только основной тон, но «обертона», которые являются ярким примером гармонических искажений. Известно, что наличие в музыкальном сигнале «обертонов» вовсе не портят, а обогащают звук. Поэтому очень важно указывать не коэффициент гармонических искажений, а весь спектр выходного сигнала, из которого можно определить тип (четные или нечетные) паразитных гармоник и их уровень относительно полезного сигнала. С точки зрения психоакустики, например, наличие в выходном сигнале ощутимых по уровню четных гармоник воспринимается на слух лучше, чем наличие малых нечетных.

Наибольший вред музыкальному сигналу приносят интермодуляционные искажения (Inter Modulation Distortion), которые возникают при подаче на вход нелинейной системы мультитонового сигнала. При этом на выходе появляются паразитные сигналы с частотами, являющимися суммой или разностью частот входных сигналов, а также суммой или разностью частот сигналов, вызванных гармоническими искажениями и через обратную связь возвращенных на вход усилителя. Подобные искажения не соотносятся с основными тонами музыкального сигнала и привносят в него фоновый шум.

Необходимо отметить, что единых стандартов по измерению интермодуляционных искажений не существует, а результаты измерений существенно зависят от уровней входных сигналов и их частот. Чаще всего, IMD не указывается просто потому, что неизвестно как его измерять. Тем не менее, данный параметр является наиболее перспективным для оценки нелинейных свойств усилителя мощности.

Скорость нарастания выходного сигнала

Данный параметр характеризует уровень динамических искажений, которые возникают вследствие ограничения скорости нарастания выходного сигнала в усилителе, охваченного глубокой обратной связью. Введение ООС, как правило, приводит к нестабильности усилителя на высоких частотах. Это вынуждает применять частотную коррекцию. В свою очередь недостаточно высокая частота среза образуемого фильтра низких частот и вызывает динамические искажения.

В музыкальном сигнале всегда присутствуют резкие всплески по уровню, например, при работе ударных инструментов. Недостаточная скорость нарастания сигнала приводит к ухудшению звучания, которое выражается в потере энергичности.

Перекрестные помехи

Данный параметр определяет степень проникновения сигнала из одного канала в другой. Высокий уровень перекрестных помех приводит к незначительному ухудшению четкости восприятия стереобазы. Однако чуткий слушатель сразу ощутит, что звук не дает представления о взаимном расположении и размерах музыкальных инструментов, т.е. отсутствие или нечеткость звуковой 3D картинки.

Не в последнюю очередь при выборе усилителя обращается внимание на его внешний вид и удобство в эксплуатации. В силу субъективности эти показатели не поддаются никакому измерению и выражаются в виде звездочек в многочисленных рейтингах и наклеек типа «Gold Design» на корпусе устройства. Вне сомнений, это также является характеристикой усилителя мощности.

Коэффициент нелинейных искажений (КНИ, THD), коэффициент гармонических искажений (КГИ, Kг, THDr) – различные подходы к определению

Коэффициент нелинейных искажений (КНИ, THD)

Коэффициент нелинейных искажений (КНИ) или Total Harmonic Distorsions (THD) – показатель, характеризующий степень отличия формы сигнала от синусоидальной, так же можно сказать это – величина для количественной оценки нелинейных искажений периодического сигнала.

Коэффициент безразмерный, но обычно умножается на 100% для получения значения в %.

Важное замечание:
В силовой электротехнике рассматриваются термины характеризующие нелинейность одного конкретного сигнала (например только сигнала выходного тока). Термины характеризующие нелинейность устройства (усилителя, и т.д.) и включающие в расчёт как входной так и выходной сигналы устройства не используются.

Коэффициент нелинейных искажений сигнала (КНИ, Kн, THD, THDf) – величина, выражающая степень нелинейных искажений сигнала, равна отношению среднеквадратичного значения всех высших гармоник сигнала к напряжению первой гармоники:

Это определение соответствует международному определению КНИ / THD для силовой электротехники и используется в большинстве анализаторов сети, например, HIOKI3197 (и др. оборудовании измеряющим КНИ), указывается в паспортных данных большинства электротехнического оборудования. Данный термин указывается в паспортных данных оборудования N-Power. Данная формула является основной (соответствует ГОСТ и EN 62040-3) , а все другие приведенные в данной статье являются упрощенными и приведены для справки.

Важные замечания:

  1. Первая гармоника также называется основной или фундаментальной, для обычной сети – это гармоника 50Гц.
  2. В паспортных значениях ИБП, стабилизаторов, и др. оборудования обычно указывается этот параметр.
  3. Оборудование измеряющее КНИ / THD (стабилизаторы, ИБП, анализаторы сети и др.), обычно используют этот параметр.
  4. КНИ используется в основном для измерения искажений формы входного или выходного тока и обозначается как: Current THD, THDI, токовый КНИ. Также параметр используется для характеристики сигнала напряжения, в этом случае он обозначается: THDU, КНИ напряжения.
  5. Во многих учебниках эта величина также может называться КГИ (RHD, Residual Harmonic Distortion) например – см. дополнение ниже.

Так же в электротехнике используется следующий термин (например Анализаторы сети могут измерять эту величину):

Коэффициент гармонических искажений (КГИ, Kг, THDr) – величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичного значения всех высших гармоник сигнала, к среднеквадратичному значению спектральных компонентов всего сигнала кроме постоянной составляющей:

Важные замечания:

  1. Нулевая гармоника называется также постоянной составляющей.
  2. Во многих учебниках эта величина также может называться КНИ(THD) например –см. дополнение ниже.
  3. При незначительных величинах гармонического состава значения THDr и THDf близки.

Соотношения связывающие обе величины:

Важные замечания:

  1. КНИ (THDf) также называется КНИ приведённым к величине СКЗ фундаментальной гармоники.
  2. КГИ (THDr) также называется КНИ приведённым к величине СКЗ полного сигнала.
  3. ГОСТ 13109-97 не использует термин КНИ, но если считать что при вычислении значения коэффициента искажения синусоидальности кривой именно его рассчётная формула приведена первой , то терминология приведённая выше соответствует ГОСТ 13109-97.
Современные международные обозначения КНИ (THD)

Приведённые ниже термины повторяют уже рассмотренные в данной статье определения.

1) THDf is the Total Distortion compared to the RMS value of the fundamental frequency value.

Remarks:
Real_i = Real part of the frequency component i
Imag_i = Imaginary part of the frequency component i

2) THDr is the Total Distortion compared to the RMS value of the total waveform.

Remarks:
Real_i = Real part of the frequency component i
Imag_i = Imaginary part of the frequency component i

Прочие определения КНИ (THD), встречающиеся в технической литературе

Существуют другие определения КНИ (THD), например, приведённые ниже. Однако, в силовой электротехнике они не используются.

1) THD:

2) THD+N – общие искажения плюс шум:

Перечень терминов и определений, применяемых ранее в русскоязычных учебниках по радиоэлектронике и электротехнике

Во избежании путаницы ниже представлена терминология, использовавшаяся в русскоязычных учебниках по радиоэлектронике и электротехнике.

Эти термины могут использоваться в настоящее время в радиотехнике, но в силовой электротехнике во избежании путаницы рекомендовано применение международных терминов (см. выше).

В русскоязычной литературе ранее были приняты обозначения и термины:

1) Коэффициент нелинейных искажений (КНИ) или коэффициент искажений или коэффициент гармонических искажений сигнала, равный отношению действующего значениия основной(первой) гармоники к действующему значению всего сигнала (всей функции):

d = Кни = КНИ = A1 / A=I1 / I

d=1 – для синусоидального сигналов
d=~0.99 – для треугольного сигнала
d=0.9 – для прямоугольного сигнала

Дополнительная информация:

Положим, что напряжение синусоидально, а ток несинусоидален. В этом случае активная мощность определяется мощностью первой гармоники:

При этом действующее значение тока:

Следовательно, коэффициент мощности:

Множитель kи называется коэффициентом искажения:

Русский термин «коэффициент искажения» эквивалентен зарубежному термину «искаженный коэффициент мощности». Его можно выразить также через THD как показано ниже:

Формула является правильной, но как в отечественной, так и зарубежной литературе, эти термины в силовой электротехнике не используются (или применяются редко). Эту формулу можно получить поставив определение КНИ в формулу определяющую «искажённый коэфф мощности»:

2) Коэффициент нелинейных искажений (КНИ) – величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичной суммы всех высших спектральных компонентов сигнала, к среднеквадратичной сумме спектральных компонентов всего сигнала (кроме постоянной составляющей), иногда используется нестандартизованный синоним – клирфактор (заимств. с нем.). КНИ – безразмерная величина, выражается обычно в процентах.

Коэффициент гармонических искажений – величина, выражающая степень нелинейных искажений устройства (усилителя и др.), равная отношению среднеквадратичного напряжения суммы высших гармоник сигнала к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

Коэффициент гармоник (КГ) так же как и КНИ выражается в процентах. Коэффициент гармоник (KГ) связан с КНИ (KН) соотношением:

Важное замечание:
Следует признать, что данная терминология долгое время являлась «правильной» для русскоязычной, немецкоязычной литературы, так же именно эти определения продолжают использоваться в некоторых анализаторах сети , но в связи с преобладанием обратной терминологии в большинстве современного оборудования (анализаторы сети, ИБП, стабилизаторы, корректоры коэффициента мощности и др.) рекомендуется применение терминов приведенных в самом начале.

Данную терминологию нельзя признать неправильной, но данные и технические характеристики оборудования N-Power указываются в соответствии с европейской и международной терминологией, поэтому рекомендуется применение терминов приведённых в самом начале.

Российский стандарт. Коэффициент нелинейных искажений (КНИ) и качество сетевого электропитания (ГОСТ 13109-97)

Ниже представлены выдержки из ГОСТ 13109-97:

Вычисляют значение коэффициента искажения синусоидальности кривой напряжения Кт в процентах как результат i-го наблюдения по формуле:

(Б.15)

где U(1)i — действующее значение междуфазного (фазного) напряжения основной частоты для i-го наблюдения, В, кВ.

При определении данного показателя КЭ допускается:

1) не учитывать гармонические составляющие, значения которых менее 0,1 %;
2) вычислять данный показатель КЭ по формуле

(Б.16)

Примечание:
Относительная погрешность определения КUi с использованием формулы (Б.16) вместо формулы (Б.15) численно равна значению отклонения напряжения U(1)i от Uном.

Формула приведенная в данном ГОСТе первой (Б.15) соответствует международному определению термина КНИ / THD (см. начало статьи, см. стандарт EN 62040-3).

Европейский стандарт качества сетевого электропитания (EN 62040-3), и коэффициент нелинейных искажений тока

Коэффициент нелинейных искажений по току в % идентичен базовому определению КНИ, определенному в стандарте EN 62040-3 и рассчитывается как процентное отношение среднеквадратичных значений высших гармоник к базовой (первой) гармоники. См. прилагаемую формулу.

Ф.Е.Евдокимов. Теоретические основы электротехники М., Академия 2004 cтр. 262

Г.И. Атабеков. Основы Теории Цепей с.176, стр. 434

Анализатор сети Fluke 435. Руководство пользователя

Справочник по радиоэлектронным устройствам. В 2-х т. Под ред. Д. П. Линде – М.: Энергия, 1978

Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины – М: Рус. яз., 1993

Коэффициент нелинейных искажений: http://ru.wikipedia.org/

Total Harmonic Distortion: http://en.wikipedia.org/wiki/Total_harmonic_distortion

Total Harmonic Distortion: http://de.wikipedia.org/wiki/THDi http://de.wikipedia.org/wiki/Total_Harmonic_Distortion

П.Шпритек. Справочное руководство по звуковой схемотехнике 3.1.1. Москва Мир 1991

Анализатор сети DMK62 Lovato. Руководство пользователя:
http://www.lovatoelectric.com/RICERCA/ITALIANO/03_ISTRUZIONI/I104IGBFE04_08.PDF

ГОСТ 8.331-99 ГСИ. Измерители коэффициента гармоник. Методы и средства поверки и калибровки.
ГОСТ 8.110-97 ГСИ. Государственная поверочная схема для средств измерения коэффициента гармоник

ГОСТ 13109-97

Анализатор сети HIOKI3197. Руководство пользователя

Современные международные обозначения КНИ(THD)
Приведённые ниже термины повторяют определения приведённые выше.
I
II
Дополнение1
Замечание: существуют другие определения КНИ(THD) например приведённые ниже но в силовой электротехнике они не используются:
I THD
II THD+N
THD+N обозначает общие искажения плюс шум.
Дополнение2
Внимание!
Во избежании путаницы ниже приведены термины ранее использовавшиеся в русскоязычных учебниках по радио/электротехнике.
Эти термины могут использоваться в настоящее время в радиотехнике но в силовой электротехнике во избежании путаницы рекомендовано применение международных терминов приведённых выше.
В русскоязычной литературе ранее были приняты обозначения и термины:
I
Коэффицие́нт нелине́йных искаже́ний (КНИ)
или Коэффициент искажения(ий)
или Коэффициент гармонических искажений сигнала
равен отношению действующего значениия основной(первой) гармоники к действующему значению всего сигнала (всей функции).
d=Кни=КНИ=A1/A=I1/I
Для синусоиды d=1, для треугольного сигнала d~=0,99, для прямоуг. сигнала d=0,9.
Дополнительная информация:
II
Коэффицие́нт нелине́йных искаже́ний (КНИ) — величина для количественной оценки нелинейных искажений, равная отношению среднеквадратичной суммы всех высших спектральных компонентов сигнала, к среднеквадратичной сумме спектральных компонентов всего сигнала (кроме постоянной составляющей), иногда используется нестандартизованный синоним — клирфактор (заимств. с нем.). КНИ — безразмерная величина, выражается обычно в процентах.
Коэффициент гармонических искажений — величина, выражающая степень нелинейных искажений устройства (усилителя и др.), равная отношению среднеквадратичного напряжения суммы высших гармоник сигнала к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.
Коэффициент гармоник так же как и КНИ выражается в процентах. Коэффициент гармоник (KГ) связан с КНИ (KН) соотношением :
Замечание 1: следует признать что данная терминология долгое время являлась «правильной» для русскоязычной, немецкоязычной литературы, так же именно эти определения продолжают использоваться в некоторых анализаторах сети , но в связи с преобладанием обратной терминологии в большинстве современного оборудования (анализаторы сети, ИБП, стабилизаторы, корректоры коэфф. мощности и др.) рекомендуется применение терминов приведённых в самом начале.
Эту терминологию нельзя признать неправильной, но данные и технические характеристики оборудования N-Power указываются в соответствии с европейской и международной терминологией, поэтому рекомендуется применение терминов приведённых в самом начале.
Дополнение 3
Выдержки из ГОСТ 13109-97:
Из приведённых в ГОСТ определений видно что вторая формула соответствует определению КНИ (несмотря на то что термин КНИ вообоще отсутствует).

Ф.Е.Евдокимов Теоретические основы электротехники М., Академия 2004 c.262.
Г.И. Атабеков Основы Теории Цепей с.176, 434с.
Анализатор сети Fluke 435 Руководство пользователя
Справочник по радиоэлектронным устройствам: В 2-х т.; Под ред. Д. П. Линде — М.: Энергия, 1978
Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины — М: Рус. яз., 1993
http://ru.wikipedia.org/ Коэффициент нелинейных искажений
http://en.wikipedia.org/wiki/Total_harmonic_distortion
http://de.wikipedia.org/wiki/THDi http://de.wikipedia.org/wiki/Total_Harmonic_Distortion
П.Шпритек Справочное руководство по звуковой схемотехнике 3.1.1, Москва Мир 1991
Анализатор сети DMK62 Lovato Руководство пользователя.
http://www.lovatoelectric.com/RICERCA/ITALIANO/03_ISTRUZIONI/I104IGBFE04_08.PDF
ГОСТ 8.331-99 ГСИ. Измерители коэффициента гармоник. Методы и средства поверки и калибровки
ГОСТ 8.110-97 ГСИ. Государственная поверочная схема для средств измерения коэффициента гармоник
ГОСТ 13109-97
Анализатор сети HIOKI3197 Руководство пользователя
С замечаниями по содержанию этого раздела просьба обращаться:.
Александр.
SIEL подвердил что все правильно с THD
Можно целиком текст ниже в статью включить+этот стандарт тоже.
Даниил А.
________________________________________
From: Mazza Angelo
Sent: Wednesday, December 21, 2011 7:33 PM
To: Daniil A.
Cc: ‘Олег Сергеев’; Matoshi Gladiola; Pensini Glauco
Subject: R: SafePower Evo input THD //l2
Dear Mr. Daniil,
the value THDI%, indicated in the manual, is the definition of Total Harmonic Distortion and is exactly equal to the definition expressed by UPS Statement of EN 62040-3, which defines it as the percentage ratio of the rms value of the harmonic content and the rms value of the fundamental component (first harmonic) which expressed by the following relationship:

Частота звука (Гц/Hz)

Диапазон, в котором слышит человек примерно 20 — 20000 Герц. Например крылья пчелы совершают в секунду около 200 колебаний и мы слышим звук с частотой 200 Гц. Писк комара ещё более высокий, потому что он машет крыльями 500 раз в секунду (500 Гц).

Герцы — количество колебаний в секунду

Для восприятия звука свыше 20000 Гц наша перепонка не способна двигаться с такой скоростью и поэтому мы ничего не можем услышать выше этой частоты . Такой звук называется ультразвуком. Ниже 20 Гц наша слуховая система также обработать не может это инфразвук.

Люди излучают звуки посредством голосовых связок, если приложить пальцы к горлу во время разговора, то по чувствуется характерная вибрация. Так сопрано — самый высокий голос и находится примерно между 1050-260 Гц, тенор 520-130 Гц, баритон 400-110 Гц, бас 350 — 80 Гц.

Тут уже не сложно провести аналогии с динамиками и диапазонами их работы на графике АЧХ, так сабвуфер предназначен для частот 20 — 100 герц, миды или среднечастотники 80 — 1500 Герц, высокочастотные динамики они же твиттеры или попросту пищалки 1500 — 20000 Герц. Разумеется цифры только примерные и всё зависит от конкретной модели динамиков.

ЧАСТОТНАЯ ХАРАКТЕРИСТИКА УСИЛИТЕЛЯ

Частотная характеристика усилителя показывает зависимость коэффи­циента усиления К от частоты f сигнала, поданного на вход усилителя. Это один из важнейших параметров, так как если К{}) неравномерна, т. е. не пря­молинейна, то это сигнализирует о том, что усилитель по-разному усиливает сигналы разных частот, тем самым внося частотные искажения. Правда, частот­ная характеристика реального усилителя (рис. 19) никогда не бывает абсолютно прямолинейной, на ней есть подъемы и провалы, причем часто эти неравномерности в усилении создают искусственно, чтобы ком­пенсировать неравномерности ча­стотных характеристик головок громкоговорителей и модуляции высокочастотного сигнала, зава­лы частотной характеристики маг­нитных лент при звукозапи­си и т. п.

Рис. 19. Частотная характеристика УЗЧ

Но в любом слу­чае неравномерность частотной характеристики должна находиться в определенных пределах, задаваемых в децибелах относительно исходно­го уровня — усиления сигнала частотой 1000 Гц. Поэтому по верти­кальной оси характеристики обычно откладывают не значение коэффи­циента усиления, равного uВЫХ/uвх, а частотных искажений в децибелах М = = 20 lg (Ko/Kf), где Ко и Кf — коэффииценты усиления по напряжению соответ­ственно на частоте 1000 Гц ,и на частоте f. Таким образам коэффициент ча­стотных искажений М показывает, на сколько децибел усиление на данной ча­стоте отличается от усиления на частоте 1000 Гц, и, как было уже отмечено, допустимые пределы этого отличия зависят от конкретного назначения усили­теля. Например для обеспечения возможно более равномерного усиления по диапазону М=3 дБ вполне допустим. И вообще в радиотехнике неравномер­ность в 3 дБ (т. е. в 1,41 раза) считается вполне допустимой погрешнюютью. На рис. 20 показаны соединения приборов для снятия частотной характе­ристики усилителя. Это основная схема соединения приборов с усилителем для измерения всех основных параметров. Особое внимание следует уделить согла­сованию выхода ЗГ со входом усилителя. К выходу усилителя надо подклю­чить эквивалент нагрузки, равный полному сопротивлению звуковой катушки головки громкоговорителя или магнитной головки, если испытывается усилитель магнитофона. Вообще же желательно испытывать усилитель с той нагрузкой, с которой он будет работать. При определении частотной характеристики уси­лителя очень важно правильно выбрать уровень входного сигнала. Чтобы при этом не ошибиться, надо предварительно измерить его чувствительность и не­линейные искажения. Чувствительность — это наименьшее напряжение входного сигнала, обеспечивающее усилителю йамйнальную выходную мощность, т ё та кую мощность, лри которой нелинейные искажения не превышают заданного значения Поскольку существует определенная взаимосвязь параметров уоили-теля, поступают следующим образом: регулятор громкости устанавливают на максимальное усиление, ЗГ настраивают на частоту 1000 Гц, постепенно уве­личивают его выходное напряжение и одновременно измерителем гармоник или, в крайнем случае, по осциллограмме измеряют коэффициент гармоник Как только он достигнет заданного максимального значения, измеряют напряжение на входе UВх и выходе Uвых усилителя, и тогда номинальная выходная мощ­ность на нагрузке Rн=U2выx/Rв При данной номинальной выходной мощности RB именно напряжение UBX характеризует чувствительность усилителя Его можно измерить любым электронным вольтметрам, в то время как выходное напряжение ивы% желательно измерять вольтметром, детектор которого pea гирует на среднеквадратическое значение напряжения Объясняется это тем что на входе усилителя форма сигнала строго синусоидальная (коэффициент гармоник сигнала на выходе ЗГ обычно не превышает 0 5%), а вот на его вы ходе при номинальной мощности коэффициент гармоник может достигать 5% и более, что дает уже заметную погрешность градуировки вольтметра с пиковым детектором — его показания будут занижены Кстати, при пользовании изме рителем гармоник надо помнить, что его вольтметр чувствителен к среднеквад ратическому значению измеряемого напряжения, поэтому вольтметром можно из мерять напряжение UВЫх.

Рис. 20. Включение измерительных приборов для измерения параметров УЗЧ

Помимо номинальной выходной мощности усилителя иногда определяют мощность, при которой коэффициент гармоник равен 10%, т е максимальную мощность Рmах.

Итак, допустим, что номинальное входное напряжение UBX ном измерено Очевидно, что это будет то максимальное напряжение, которое может ока заться на входе усилителя в реальных условиях Уровень входного сигнала при определении частотной характеристики усилителя выбирают 0,5UВ1 ном, ис исходя из следующих соображений. Если принять уровень испытательного сиг­нала равным Uвх ном, то возникнут некоторые ограничения по максимуму в каскадах усилителя в насыщении магнитопровода выходного трансформатора и т п, а ведь именно по этим причинам возрастают нелинейные искажения Все это, влияя на форму частотной характеристики, исказит ее по сравнению с характеристикой при работе усилителя с меньшими уровнями входного сиг­нала Если же выбрать очень малый уровень испытательного сигнала, то бу­дут сказываться нелинейные начальные участки характеристик транзисторов вы-ходного каскада, напряжения шумов, паразитные наводки, что тоже приведет к искажению формы частотной характеристики Поэтому выбирают «золотую середину» — 0,5Uвх ном, что, кстати, соответствует наиболее вероятному в ра­бочих условиях уровню входного сигнала

Рис 21 Амплитудная характе ристика УЗЧ

При определении возможных уровней входного сигнала можно определить и амплитудную характеристику усилителя на частоте 1000 Гц Для этого уста­навливают UBx = l,5UBX ном, измеряют и записывают соответствующее ему ивых Затем уменьшают UBZ (делителем на выходе ЗГ), вновь измеряют Uвых, и так до минимально возможного напряжения входного сигнала (уровня, при ко­тором сигнал на выходе менее чем на 3 дБ, т е примерно в 1,5 раза, превышает шумы усилителя) По результатам измерений строят амплитудную характе­ристику усилителя (рис 21) Масштаб оси мвх лучше брать логарифмическим, так как входное напряжение изменяется в боль ших пределах от милливольт до деся­тых долей вольта Желательно чтобы эта характеристика быча более линейной, хотя иногда нужны усилители с опреде ленной формой амплитудной характери стики, например с логарифмической за висимостью усиления Для обычных УЗЧ допустимы небольшие отклонения от ли­нейности, особенно в области минимальных и максимальных входных напряжений.

Как уже говорили, при определении частотной характеристики усилителя Уровень входного сигнала устанавливают равным 0,5U„х ном, затем измеряют и записывают выходное напряжение на частоте 1000 Гц, которое будет нуле вым уровнем Затем частоту ЗГ последовательно изменяют в сторону снагаала Уменьшения затем увеличения, поддерживая уровень его входного напряже ния равным 0,5U„х ном Для каждой частоты записывают соответствующее вы­ходное напряжение Поскольку UBX в процессе измерения неизменно, то UВЫх, нанесенные на график в координатах UBha(f), покажут зависимость коэффи­циента усиления К=Uвыт/Uвх от частоты f (см рис 19) Ее можно построить и в значениях коэффициента частотных искажений Af=20 lg(UBbiX mafUBblx f).

При градуировке выходных делителей ЗГ в децибелах частотную характеристику можно получить и без вычислений. Для этого замечают показания вольтмегра на выходе усилителя, а затем для каждой из частот устанавливают делителем выходное напряжение ЗГ, при котором отклонение стрелки вольтетра остается неизменным. Тогда коэффициент частотных искажений в децибелах для данной частоты будет равен изменению выходного напряжения ЗГ. Например, если при сигнале частотой 1000 Гц для отклонения стрелки вольт­метра на некоторый угол при уровне входного сигнала UВх = 0,5Uвх.ввм де­литель ЗГ будет установлен в положение 24 дБ, а при переходе на частоту 4000 Го, для такого же отклонения стрелки вольтметра на выходе усилителя делитель генератора приходится поставить в положение 27 дБ, то на этой ча­стоте мы имеем подъем частотной характеристики усилителя на 3 дБ относи­тельно уровня на частоте 1000 Гц. Но не следует забывать, что при пере­стройке ЗГ с одной частоты на другую, его выходное напряжение может из­меняться, поэтому по встроенному вольтметру генератора надо следить, чтобы напряжение на входе делителя на частоте 4000 Гц было таким же, как и при сигнале частотой 1000 Гц.