Излучение в космосе

Как проходили исследования?

В 2001 году NASA отправило на Марс космический аппарат Mars Odyssey, оснащенный специальным инструментом MARIE (Martian Radiation Experiment), который должен был измерить уровень радиации вокруг Марса. Поскольку у Марса довольно тонкая атмосфера, радиация, зафиксированная Mars Odyssey, должна была быть практически такой же, как и на поверхности.

За 18 месяцев работы зонд Mars Odyssey обнаружил постоянную радиацию, уровень которой в 2,5 раза превышал уровень на Международной космический станции — 22 миллирад в день, или 8000 миллирад (8 Рад) в год. Космический аппарат также зафиксировал два солнечных протонных события, при которых уровень радиации поднимался до 2000 миллирад в день.

Для сравнения: люди в развитых странах подвергаются воздействию в среднем 0,62 Рад в год. И хотя исследования показали, что человеческий организм может выдержать дозу до 200 рад без каких-либо повреждений, длительное воздействие радиации марсианского уровня может привести ко всем видам проблем со здоровьем — острой лучевой болезни, повышенного риска развития рака, генетическим повреждениям и даже смерти.

Поэтому NASA и другие космические агентства придерживаются стратегии минимальных рисков при планировании миссий.

Возможные решения

Первым посетителям Марса определенно придется столкнуться с повышенным уровнем радиации на поверхности. Более того, любые попытки колонизировать Красную планету также потребуют мер для минимизации воздействия. Несколько решений уже имеется — как краткосрочных, так и долгосрочных.

К примеру, NASA поддерживает работу нескольких спутников, которые изучают Солнце, космическую среду по всей Солнечной системе и отслеживают галактические космические лучи в надежде обеспечить лучшее понимание солнечной и космической радиации. Также в агентстве занимаются поисками лучших вариантов экранирования астронавтов и электроники.

В 2014 году NASA запустило Reducing Galactic Cosmic Rays Challenge, интенсивный конкурс с призом в 12 000 долларов, которыми будут поощрены лучшие идеи по снижению воздействия на космонавтов галактических космических лучей. После первого конкурса в апреле 2014 года последовал еще один в июле с общим призовым уже в 30 000 долларов за идеи, связанные с активной и пассивной защитой.

Когда дело доходит до долгосрочного пребывания и колонизации, в прошлом всплывали еще несколько идей. Например, как предлагали Роберт Зубрин и Дэвид Бейкер в плане миссии Mars Direct, жилища можно строить прямо в земле, которая будет естественной защитой от радиации.

Предлагали также и создавать надувные модули, заключенные в керамике, созданной с помощью марсианского грунта. Этот план будет опираться на технику 3D-печати, известную как «спекание», когда песок превращается в расплавленный материал с помощью рентгеновских лучей.

MarsOne, некоммерческая организация, которая обещает колонизировать Марс в ближайшие несколько десятилетий, предлагает свой вариант защиты марсианских поселенцев от радиации. Организация предложила встроить экранирование в космический аппарат миссии, транспортное средство и жилой модуль. В случае солнечной вспышки, если защиты будет недостаточно, они предлагают создать специализированное радиационное убежище (расположенное в полой емкости для воды) внутри их Mars Transit Habitat.

Но самое радикальное предложение по снижению воздействия включает перезапуск ядра планеты для восстановления ее магнитосферы. Для этого нам нужно разжижить внешнее ядро, чтобы оно снова могло конвектировать вокруг внутреннего ядра. Собственное вращение планеты начнет создавать эффект динамо и магнитное поле будет генерироваться.

По словам Сэма Фактора, аспиранта с кафедры астрономии Университета штата Техас, есть два способа сделать это. Первый — взорвать серию термоядерных боеголовок вблизи ядра планеты, а второй — пропустить электрический ток через планету, производя сопротивление в ядре, которое будет разогреваться.

Учеными из Национального института наук синтеза (NIFS) в Японии в 2008 году было проведено исследование, в котором рассмотрели возможность создания искусственного магнитного поля вокруг Земли. Обнаружив, что за последние 150 лет интенсивность магнитного поля упала на 10%, они выступили за создание окружающих планету сверхпроводящих колец, которые могли бы компенсировать будущие потери.

С несколькими изменениями, такая система может быть адаптирована для Марса. Она будет создавать магнитное поле, которое может помочь экранировать поверхность от части вредоносной радиации. И если терраформаторы смогут создать на Марсе атмосферу, такая система также защитит ее от солнечного ветра.

Наконец, исследование, проведенное в 2007 году исследователями из Института минералогии и петрографии в Швейцарии, показало, как выглядит ядро Марса. Используя алмазную камеру, ученые смогли воспроизвести условия давления на железо-серные и железо-никель-серные системы, которые соответствуют центру Марса.

Они обнаружили, что при температурах марсианского ядра (порядка 1227 градусов по Цельсию), внутреннее ядро было бы жидким, но внешнее — слегка затвердевшим. Это сильно отличается от земного ядра, в котором отвердевание внутреннего ядра высвобождает тепло, которое сохраняет внешнее расплавленным, рождая таким образом эффект динамо и магнитное поле.

Отсутствие твердого внутреннего ядра на Марсе будет означать, что однажды жидкое внешнее ядро должно было иметь другой энергетический источник. Каким-то образом этот источник иссяк, и внешнее ядро затвердело, положив конец эффекту динамо. Однако их исследование также показало, что остывание планеты могло бы привести к отвердению ядра в будущем, поскольку либо богатые железом твердые вещества провалились бы в центр, либо сульфиды железа кристаллизовались бы в ядре.

Другими словами, ядро Марса однажды может стать твердым, нагревая внешнее ядро и расплавляя его. В сочетании с собственным вращением планеты, это будет вырабатывать эффект динамо, который однажды снова запустить магнитное поле планеты. Если это правда, то колонизация Марса и безопасное проживание на нем будет вопросов времени — нужно будет подождать, пока ядро кристаллизуется.

По-другому никак. В настоящее время радиация на поверхности Марса довольно опасна. Поэтому любые полеты на планету в будущем будут принимать во внимание радиационную защиту и контрмеры. И все, кто останется на Марсе надолго, должны будут либо закопаться глубже в землю, либо оградить себя от солнечных и космических лучей.

Но необходимость — мать изобретения, не так ли? И раз уж нам нужно начинать колонизировать другие миры, если мы хотим выжить как вид, нам придется прибегать к инновационным решениям.

Почему космонавтов не убивает радиация которая есть в космосе?

Nekto V-Palto 13610 2 года назад физик-теоретик в прошлом, дауншифтер и журналист в настоящем, живу в Германии АВТОР ВОПРОСА ОДОБРИЛ ЭТОТ ОТВЕТ

Вблизи Земли продолжает защищать ее магнитное поле — пусть даже ослабленное и без помощи многокилометровой атмосферы. Пролетая в районе полюсов, где поле мало, космонавты сидят в особо защищенном помещении. А для радиационной защиты при полете на Марс пока нет удовлетворительного технического решения.

Решил дополнить исходный ответ по двум причинам:

  1. в одном месте он содержит неверное утверждение и не содержит верное
  2. просто для полноты картины (цитаты)

1. В комментариях Сузанна покритиковала ответ — во многом справедливо.

Над магнитными полюсами Земли поле слабеет, как я и утверждал. Да, Сузанна права, что У ПОЛЮСОВ оно особо велико (представьте себе силовые линии: они собираются именно у полюсов). Но на большой высоте НАД ПОЛЮСАМИ оно слабее чем в других местах- по той же самой причине (представьте те же силовые линии: они ушли вниз — к полюсам, а вверху их почти не осталось). Поле как бы проседает.

Но Сузанна права в том, что космонавты МЧС не укрываются в спецпомещении из-за приполярных областей: меня подвела память.

Но все же есть место, над которым спецмеры принимаются (его я и спутал с приполярными областями). Это — над магнитной аномалией в Южной Атлантике. Там магнитное поле настолько «проседает», что орбита МКС пересекает радиационный пояс и принимать спецмеры приходится без всяких вспышек на Солнце. Цитату о не связанных с солнечной активностью спецмерах быстро найти не смог, но я о них где-то читал.

Ну и, конечно, стоит упомянуть и сами вспышки: от них тоже укрываются в наиболее защищенном помещении, а не разгуливают в это время по всей станции.

Все солнечные вспышки тщательно отслеживаются и информация о них отправляется в центр управления. В такие периоды космонавты прекращают работу и укрываются в наиболее защищённых отсеках станции. Такими защищёнными сегментами являются отсеки МКС рядом с ёмкостями с водой. Вода задерживает вторичные частицы — нейтроны, и доза радиации поглощается эффективнее.

http://nigramma.ru/?p=5180

2. Просто цитаты и допинформация

В некоторых цитатах ниже упоминается доза в Зивертах (Зв). Для ориентировки некоторые цифры и вероятные эффекты из таблицы в http://nuclphys.sinp.msu.ru/pilgrims/cr16.htm

0-0.25 Зв. Нет эффекта, за исключением умеренных изменений в крови

0.25-1 Зв. Радиационные заболевания из 5-10% облучённых людей

7 Зв ~100% летальных исходов

Суточная доза на МКС — около 1 мЗв (см. ниже). Значит, можно без особого риска летать около 200 суток. Важно также, за какой срок набрана одна и та же доза: набранная за короткое время намного опаснее, чем за набранная за длительный срок. Организм — не пассивный объект просто «набирающий» радиационные дефекты: есть у него и «ремонтные» механизмы и с постепенно набираемыми малыми дозами они обычно справляются.

В отсутствие массивного атмосферного слоя, который окружает людей на Земле, космонавты на МКС подвергаются более интенсивному облучению постоянными потоками космических лучей. В день члены экипажа получают дозу радиации в размере около 1 миллизиверта, что примерно равнозначно облучению человека на Земле за год. Это приводит к повышенному риску развития злокачественных опухолей у космонавтов, а также ослаблению иммунной системы.

https://ru.wikipedia.org/wiki/Международная_космическая_станция

Как показывают данные, собранные NASA и специалистами из России и Австрии, астронавты на МКС ежедневно получают дозу в 1 миллизиверт. На Земле такую дозу облучения не везде можно получить и за целый год.

Этот уровень, впрочем, ещё относительно терпим. Однако необходимо иметь в виду, что околоземные космические станции находятся под защитой магнитного поля Земли.

За его пределами радиация возрастёт во много раз, следовательно, экспедиции в глубокий космос окажутся невозможными.

Радиация в жилых корпусах и лабораториях МКС и «Мира» возникала вследствие бомбёжки космическими лучами алюминиевой обшивки станции. Быстрые и тяжёлые ионы выбивали из обшивки изрядное количество нейтронов.

Чтобы избежать этого, специалисты NASA добавили в обшивку слой полиэтилена, из которого при бомбёжке тяжёлыми ионами вылетало бы меньше нейтронов. К сожалению, реальный эффект оказался меньше ожидаемого.

В настоящее время на космических кораблях невозможно обеспечить стопроцентную защиту от радиации. Точнее, возможно, но за счёт более чем значительного увеличения массы, а вот это-то как раз и недопустимо

Кроме атмосферы нашей, защитой от радиации является магнитное поле Земли. Первый радиационный пояс Земли находится на высоте порядка 600-700 км. Станция сейчас летает на высоте порядка 400км, что существенно ниже … Защитой от радиации в космосе является (также – ред.) корпус корабля или станции. Чем толще стенки корпуса, тем больше защита. Конечно, стенки не могут быть бесконечно толстыми, потому что существуют весовые ограничения.

Ионизирующий уровень, фоновый уровень радиации на международной космической станции выше, чем на Земле (примерно в 200 раз – ред.), что делает космонавта более подверженным ионизирующему излучению, чем представителей традиционно радиационно-опасных отраслей, таких как атомная энергетика и рентгенодиагностика.

Кроме индивидуальных дозиметров космонавтов на станции есть еще система радиационного контроля. … По одному датчику расположено в каютах экипажа и по одному датчику в рабочем отсеке малом и большом диаметре. Система работает автономно 24 часа в сутки. … Таким образом Земля располагает информацией о текущей радиационной обстановке на станции. Система радиационного контроля способна выдавать предупреждающий сигнал «Проверь радиацию!». Если бы это случилось, то на пульте сигнализации систем мы увидели бы загорание транспаранта с сопровождающим звуковым сигналом. За все время существование космической международной станции таких случаев не было.

… в … районе Южной Атлантики … радиационные пояса “провисают” над Землей из-за существования глубоко под Землей магнитной аномалии. Космические корабли, летающие над Землей, как бы “чиркают” пояса радиации в течение очень непродолжительного времени … на витках, проходящих район аномалии. На других витках потоки радиации отсутствуют и не создают хлопот участникам космических экспедиций.

… магнитная аномалия в районе Южной Атлантики – не единственная радиационная “напасть” для космонавтов. Солнечные вспышки, генерирующие подчас весьма энергичные частицы … , могут создать большие сложности для полётов космонавтов. Какая доза радиации может быть получена космонавтом в случае прихода солнечных частиц к Земле – во многом воля случая. Эта величина определяется, в основном, двумя факторами: степенью искажения дипольного магнитного поля Земли во время магнитных бурь и параметрами орбиты космического аппарата в течение солнечного события. … Экипажу может повезти, если орбиты в момент вторжения СКЛ не проходят опасных высокоширотных участков.

. . .

Одно из наиболее мощных протонных извержений – радиационная буря солнечных извержений, вызвавшая радиационную бурю вблизи Земли, произошло совсем недавно – 20 января 2005 г. Аналогичное по мощности солнечное извержение было 16 лет назад, в октябре 1989 г. Множество протонов с энергиями, превышающими сотни МэВ, достигли магнитосферы Земли. Кстати, такие протоны способны преодолеть защиту толщиной, эквивалентной примерно 11 сантиметрам воды. Скафандр космонавта – тоньше. Биологи считают, что если в это время космонавты оказались бы вне Международной космической станции, то, безусловно, воздействие радиации сказалось бы на здоровье космонавтов. Но они находились внутри неё. Защита МКС достаточно велика, чтобы обезопасить экипаж от неблагоприятного воздействия радиации во многих случаях. Так было и во время данного события. Как показали измерения с помощью радиационных дозиметров, “схваченная” космонавтами доза радиации не превышала той дозы, которую человек получает при обычном рентгеновском обследовании. Космонавты МКС получили 0.01 Гр или ~ 0.01 Зиверт … Правда, столь малые дозы связаны и с тем, что, как об этом написано ранее, станция находилась на “магнитно-защищённых” витках, что может случаться не всегда.

Нил Армстронг (первый астронавт, вступивший на Луну) сообщил на Землю о своих необычных ощущениях во время полёта: порой он наблюдал яркие вспышки в глазах. Иногда их частота достигала около сотни в день … Учёные … пришли к выводу, что ответственны за это … галактические космические лучи. Именно эти частицы высокой энергии, проникая в глазное яблоко, вызывают черенковское свечение при взаимодействии с веществом, из которого состоит глаз. В результате астронавт и видит яркую вспышку. Наиболее эффективно с веществом взаимодействуют не протоны, которых в составе космических лучей больше всех остальных частиц, а тяжёлые частицы – углерод, кислород, железо. Эти частицы, обладая большой массой, теряют значительно больше своей энергии на единицу пройденного пути, чем их более лёгкие собратья. Именно они и ответственны за генерацию черенковского свечения и возбуждение ретины – чувствительной оболочки глаза.

При дальних космических полётах возрастает роль галактических и солнечных космических лучей как радиационно-опасных факторов. Подсчитано, что при полёте на Марс именно ГКЛ становятся основной радиационной опасностью. Полёт на Марс длится порядка 6 месяцев, и интегральная – суммарная — доза радиации от ГКЛ и СКЛ за этот период в несколько раз выше дозы радиации на МКС за то же время. Поэтому риск радиационных последствий, связанных с выполнением дальних космических миссий значительно возрастает. Так, за год полёта на Марс, поглощённая доза, связанная с ГКЛ, составит 0.2-0.3 Зв (без защиты). Её можно сравнить с дозой от одной из самых мощных вспышек прошлого столетия – августа 1972 г. Во время этого события она была в несколько раз меньше: ~0.05 Зв.

Радиационную опасность, создаваемую ГКЛ, можно оценить и предсказать. Сейчас накоплен богатый материал по временным вариациям ГКЛ, связанным с солнечным циклом. Это позволило создать модель, на основе которой удаётся предсказать поток ГКЛ на любой заданный вперёд период времени.

Гораздо сложнее обстоят дела с СКЛ. Солнечные вспышки возникают случайным образом и даже не очевидно, что мощные солнечные события возникают в годы, обязательно близкие к максимуму активности. По крайней мере, опыт последних лет показывает, что они происходят и во времена затихшего светила.

Протоны солнечных вспышек несут реальную угрозу космическим экипажам дальних миссий. Взяв вновь в качестве примера вспышку августа 1972 г., можно показать, пересчитав потоки солнечных протонов в дозу радиации, что через 10 часов после начала события, она превысила летальное значение для экипажа космического корабля, если бы он оказался вне корабля на Марсе или, скажем, на Луне.

. . .

Здесь уместно вспомнить полёты американскго “Apollo” к Луне в конце 60-х – начале 70-х. В 1972 г., в августе, была такая же по мощности вспышка на Солнце, как и в октябре 1989 г. “Apollo-16” приземлился после своего лунного путешествия в апреле 1972 г., а следующий – “Apollo-17” стартовал в декабре. Повезло экипажу “Apollo-16”? Безусловно, да. Расчёты показывают, будь астронавты “Apollo” в августе 1972 г. на Луне, они бы подверглись облучению с дозой радиации в ~4 Зв. Это – очень много, чтобы спастись. Если… если быстро не возвратиться на Землю для экстренного лечения. Другой вариант – перейти в кабину лунного модуля “Apollo”. Здесь доза радиации уменьшилась бы в 10 раз. Для сравнения скажем, что защита МКС в 3 раза толще, чем лунного модуля “Apollo”.

На высотах орбитальных станций (~400 км) дозы радиации превышают величины, наблюдающиеся на поверхности Земли, в ~200 раз! В основном за счёт частиц радиационных поясов.

Известно, что некоторые трассы межконтинентальных самолётов проходят вблизи северной полярной области. Эта область наименее защищена от вторжения энергичных частиц и поэтому во время солнечных вспышек опасность радиационного облучения экипажа и пассажиров возрастает. Солнечные вспышки увеличивают дозы радиации на высотах полётов самолётов в 20-30 раз.

В последнее время экипажи некоторых авиалиний информируются о начале наступления вторжения солнечных частиц. Одно из недавних мощных солнечных извержений, случившеееся в ноябре 2003 г., заставило экипаж “Дельты” рейса Чикаго — Гонг-Конг свернуть с пути: лететь к пункту назначения более низкоширотным маршрутом.

Землю от космического излучения защищают атмосфера и магнитное поле. На орбите радиационный фон в сотни раз больше, чем на поверхности Земли. Каждые сутки космонавт получает дозу облучения 0,3—0,8 миллизиверта — примерно в пять раз больше, чем при рентгене грудной клетки. При работе в открытом космосе воздействие радиации оказывается еще на порядок выше. А в моменты мощных солнечных вспышек можно за один день на станции схватить 50-суточную норму. Не дай бог в такое время работать за бортом — за один выход можно выбрать допустимую за всю карьеру дозу, составляющую 1000 миллизивертов. В обычных условиях ее хватило бы года на четыре — столько еще никто не налетал. Причем ущерб здоровью от такого однократного облучения будет значительно выше, чем от растянутого на годы.

И все же низкие околоземные орбиты еще относительно безопасны. Магнитное поле Земли захватывает заряженные частицы солнечного ветра, образуя радиационные пояса. Они имеют форму широкого бублика, окружающего Землю по экватору на высоте от 1000 до 50 000 километров. Максимальная плотность частиц достигается на высотах около 4000 и 16 000 километров. Сколько-нибудь длительная задержка корабля в радиационных поясах представляет серьезную угрозу жизни экипажа. Пересекая их на пути к Луне, американские астронавты за несколько часов рисковали получить дозу 10—20 миллизивертов — как за месяц работы на орбите.

В межпланетных полетах вопрос радиационной защиты экипажа стоит еще острее. Земля экранирует половину жестких космических лучей, а ее магнитосфера почти полностью задерживает поток солнечного ветра. В открытом космосе без дополнительных мер защиты облучение вырастет на порядок. Иногда обсуждается идея отклонять космические частицы сильными магнитными полями, однако на практике ничего, кроме экранирования, пока не отработано. Частицы космического излучения неплохо поглощаются ракетным топливом, что наводит на мысль использовать полные баки как защиту от опасной радиации.

С тех пор как человечество загорелось идеей колонизировать Красную планету, никто не видел больших препятствий, чем расстояние между Землей и Марсом. Однако существует более серьезная угроза – радиация.

Источники радиации на Марсе

Каковы источники радиации на Марсе? Попробуем разобраться в этом вопросе. Когда-то в центре планеты – его ядре, могли происходить определённые потоки, которые создавали эффект динамо. А он уже в свою очередь заставлял работать магнитное поле. Но 4 млрд. лет назад из-за ускоренного уменьшения температуры ядра по не виданным причинам эффект исчез. Постепенно слабеющие магнитное поле повлекло за собой и другие последствия, солнечный ветер сдул атмосферу Марса. Тем самым оставил планету без защиты от космического излучения. Отсутствие магнитного поля увеличит радиацию вдвое, при условии, что есть атмосфера. Именно толщина атмосферы, а не ее состав, куда более важный фактор, играющий весомую роль в защите от доз радиации, полное ее отсутствие увеличит излучение в 1600 раз.
Откуда на Марсе радиация — сильнее всего Марс подвержен двум типам радиации: солнечная радиация и космическая.

  • Первый тип появляется из-за постоянного потока солнечных частиц, исходящих от звезды. Выбросы происходят во время солнечного ветра или хромосферных вспышек. Так как они все протоны, из-за их энергии они будут отражены оборудованием, несмотря на их количество. Но во время солнечных вспышек, длящихся несколько дней, защитить колонизаторов будет уже намного сложнее.
  • Космический тип радиации исходит от сверхновых звезд, находящихся в Млечном пути, а возможно и в других галактиках. Излучение состоит из галактических космических лучей, сокращенно – ГКЛ. Эти частицы перемещаются почти со скоростью света и имеют больше энергии, из-за чего их сложнее экранировать современным оборудованием. И хотя они также в основном состоят из протонов, некоторые из них являются более тяжелыми элементами, как гелий. Когда они натыкаются на предмет, то могут выбить атомы из его структуры, будь это корабль или космонавт.

Два этих типа излучения вызывают рак и могут провоцировать снижение иммунитета и болезни сердца. Радиация на Марсе страшна не так, как на пути к нему, ведь, несмотря на отсутствие магнитосферы, там все же есть атмосфера, хоть она и на порядок менее плотная, чем земная. А вот в открытом космосе опасность, которой подвергают себя астронавты, намного увеличивается.

Уровень радиации на поверхности Марса

До начала 2000-х мало что было известно о радиации на поверхности Марса. Все знания ученых об этой теме на данный момент, получены благодаря измерениям проведенными марсоходом Curiosity и станцией Mars Odyssey.

Станция запущена в октябре 2001 была отправлена, чтобы выяснить какой уровень радиации вокруг Марса. Она не была на самой поверхности, но так как атмосфера у планеты тонкая, показания должны совпадать. Проводились измерения устройством MARIE. За 1.6 года работы Mars Odyssey было определено, что уровень радиации на Марсе в 2.5 раза превышает дозу получаемую работниками МКС. Что бы было с чем сравнить: обычный человек, живущий в развитой стране, получает в среднем 0.62 рад в год.

Станция рабочая и самая долговечная из всех аппаратов, отправленных на Марс.

А в августе 2012 отправлен марсоход Curiosity, чтобы следить за уровнем радиации уже на поверхности планеты. Сбор данных проводился детектором оценки радиации RAD (Radiation Assessment Detector). C его помощью было обнаружено, что доза облучения на Марсе сопоставима с той, что испытывают космонавты на МКС — 0.7 миллизиверта в день.

И самое главное: учёные подсчитали, что 860 дневное путешествие на Марс подвергнет астронавтов дозе облучения в 1,01 зиверта. Для сравнения: дозой в 1 зиверт ограничивают космонавтов на все время их работы на МКС. Такое ограничение связано с 5% увеличением риска рака.

Как говорит один из создателей Curiosity Дон Хасслер, радиационная среда Марса крайне динамична, поэтому не стоит рассматривать данные измерения как последнее слово.

Воздействие радиации на человека

Как бы там ни было, радиация на Марсе намного меньше, чем во время полета. Это связано с тем, что у планеты присутствует хоть и тонкая, но атмосфера, которая защищает от излучения. Измерения RAD во время восьмимесячного путешествия марсохода Curiosity показали, что доза радиации при полете на Марс составляет 1.9 миллизиверта в день. Но Хасслер подметил, что эти данные далеки от возможного реального маршрута на планету, ведь ему ни разу не встречались солнечные бури, заряженные частицы которых сильно влияют на радиационный фон.

Как показывает исследование, 95% излучения, зафиксированного RAD, исходит от Галактических Космических Лучей, от которых пока нет 100% защиты.
Кэрри Зейтлин, один из ученых НАСА участвующих в марсианском эксперименте радиационной среды, говорит: «На пути туда и обратно астронавты получат дозу облучения сопоставимую с КТ брюшной полости каждые пять дней».

Для каждого космонавта главная проблема это накапливание радиации, ведь именно из-за неё эта профессия такая опасная.

При длительном пребывании в радиационном фоне излишнее количество радиации приводит к повреждению клеток или ДНК. Это означает повышенный риск развития рака в будущем или, в худшем случае, острую лучевую болезнь во время миссии, если доза энергетических частиц велика.

Эффекты, которые может принести длительное нахождение в радиационном поле Марса и под непосредственным влиянием космической радиации делится на два вида:

  • Острые эффекты можно почувствовать почти сразу, когда за короткое время накапливается большая доза радиации. Это может быть, допустим, лучевой синдром, который вызывает тошноту, рвоту и усталость.
  • Хронические эффекты это результат длительного накопления огромной дозы радиации. Они проявляются на протяжении длительного времени. Их симптомы это все возможные проблемы со здоровьем или генетическим кодом — острая лучевая болезнь, повышенный риск появления злокачественной опухоли, генные мутации и смерть.

Оба этих эффекта опасны для человека, но в силу того, что хронические могут развиваться в течение нескольких десятилетий, заметить их вовремя сложнее.

Как защититься от радиации

Вопрос «как защититься от радиации на Марсе» стал одним из самых обсуждаемых в научном сообществе, когда дело касается космоса.

100% защита от радиации пока является утопией, однако НАСА бросает все свои силы на её поиски и у них уже есть возможные варианты решения проблемы. Одними из таких будут: либо закопаться глубже в землю для построения подземных колоний, либо пытаться совершенствовать оборудование и материалы, из которых оно состоит.

Но лучшими идеями по снижению воздействия излучения будут: использовать больше традиционных материалов космического корабля или использовать более эффективные экранирующие материалы.

Первый вариант будет более затратным, ведь чем больше масса корабля, тем больше топлива для него нужно. Вот почему стоит обратить внимание на второй.
Лучший способ остановить излучение частиц — запустить эту энергетическую частицу в нечто похожего размера.

Поскольку протоны и нейтроны похожи по размеру, есть один элемент, который очень хорошо блокирует оба — водород, при этом чаще всего он существует в виде одного протона и электрона. Удобно, что водород это наиболее распространенный элемент во вселенной и составляет большую часть соединений, как вода, пластмасса, и полиэтилен.

Полиэтилен, тот же пластик, который обычно содержится в бутылках с водой и продуктовых пакетах, также может быть кандидатом на защиту от облучения радиационного фона. Он недостаточно крепок, чтобы построить космический корабль, который подвергается воздействию высокой температуры и огромному давлению во время запуска. А добавление полиэтилена к металлической структуре добавит массы, и, соответственно, топлива.

Один материал, находящийся в разработке в НАСА, может выполнять обе эти задачи: гидрогенизированные нанотрубки нитрида бора, известные как гидрогенизированные БННТ. Это крошечные нанотрубки, сделанные из углерода, бора и азота с водородом вкрапленным в пустые пространства между ними. Бор также отличный поглотитель вторичных нейтронов, что делает гидрированные БННЦ идеальным материалом для отражения радиации.

Хотя гидрогенизированные БННТ еще в стадии разработки, они могут стать одним из ключевых материалов в космических кораблях, транспортных средствах и скафандрах, которые будут использоваться на Марсе.

Ученые думают над путями создания силовых полей. Силовые поля вполне реальны: как и магнитное поле Земли защищает людей от энергичных частиц, относительно небольшое электрическое или магнитное поле — если оно достаточно сильное — создаст защитный пузырь вокруг космического корабля. Для создания этой идеи требуется чрезмерное количество энергии и конструкционных материалов, поэтому реализация требует больше работы.

В заключении радует, что, несмотря на очевидные сложности и опасность будущего путешествия, ученые не опускают руки и вместо того, чтобы оставить идею они ищут обходные пути и способы решения будущих проблем, в том числе и радиации.

Пригодилась информация? Плюсани в социалки!

  • В честь какого мифологического персонажа названа планета Марс
  • Фантастические звуки Марса — как звучит звук в атмосфере планеты
  • История образования Марса — сколько лет красной планете

Космическое излучение

Космическое излучение (космические лучи) — ионизирующие потоки частиц или электромагнитные волны космического происхождения и разных энергий, не воспринимаемые органами чувств человека, хотя и воздействующие на живое вещество клеток. Эти потоки движутся в мировом пространстве от источников излучения, звезд и галактик, достигая околоземного космического пространства, области магнитосферы Земли, а иногда и земной поверхности.

Доступные таким образом астрофизическому изучению лучи служат, наравне с видимым светом, носителями обширной информации о физических процессах в Солнечной системе и далеком космосе, а также об общих свойствах материи в бесконечном пространстве-времени Вселенной.

Существование космических лучей впервые было предположено австрийским физиком В. Гессом в 1913 г. Этим явлением ученый пытался объяснить феномен электропроводности воздуха. В результате своих экспериментов Гесс доказал приход на Землю из космоса проникающего излучения, которое ионизирует молекулы воздуха, вызывая явление электропроводности.

Выводы австрийского физика подтвердил советский ученый Д.В. Скобельцын в 1927, во время опытов с камерой Вильсона. В магнитном поле камеры были зарегистрированы следы заряженных частиц с высокой энергией, около нескольких миллиардов эВ. Такие частицы обладают большой скоростью и вызывают странное поведение вещества при взаимодействии с ними.

Благодаря дальнейшим работам в этом направлении — поиску с камерой Вильсона — американцем К. Андерсоном были открыты частицы, составляющие космические лучи. В 1932 американский физик открыл позитрон, а спустя 4 года мюон. В 1947 англичанин С. Пауэлл обнаружил пион, являющийся прародителем мюона. В дальнейшем последовали открытия гиперонов и мезонов.

Благодаря космическим исследованиям ядерная физика обогатилась новыми представлениями о свойствах материи, что позволило после исследований 1953 года создать теорию слабых взаимодействий, прежде находившуюся в зачаточном состоянии (теория Ферми). Дальнейшие исследования позволили выяснить закономерности сильных взаимодействий. За 1940-50-е гг. исследования астрофизиков выявили строение спектра космических излучений и происхождение большинства частиц.

Энергия потока в целом составляет от 0,000 01 до 100 квинтиллионов эВ. Слагающие поток частицы относятся к т.н. галактическому космическому излучению (ГКИ), представленное ядрами гелия и протонами — ядрами водорода. ГКИ полностью поглощается свинцовым экраном 15-метровой толщины. Проникающая способность этого излучения уступает лишь нейтрино. Губительное ГКИ значительно ослабляется магнитосферой Солнечной системы — суммарным магнитным полем планет и Солнца, а также солнечным ветром. Атмосфера и собственная магнитосфера нашей планеты оберегает биосферу от интенсивного воздействия космических лучей: часть их не достигает поверхности. Попадая в атмосферу, поредевшие космические лучи испытывают ядерные превращения, названные каскадным процессом. Сам каскад принято называть вторичным излучением (первичным было собственно ГКИ из протонов и гелия).

Первой стадией каскада является ядерно-активная: частицы представлены протонами, нейтронами и пионами. На второй, проникающей стадии, излучение состоит из мюонов. На третьей стадии частицы лучей — это электроны и гамма-фотоны. Спектр вторичного излучения состоит из всех трех каскадов в разном соотношении. Эти каскады обрушиваются на Землю в виде т.н. атмосферного ливня.

В астрофизике одинаково важны все типы излучений, но наиболее легко регистрируются и наиболее информативны при исследовании Солнечной системы альфа-, бета- и гамма-лучи. Альфа-лучами называются потоки положительно заряженных ядер гелия-4, очень устойчивых частиц из разряда ГКИ. Бета-лучами называется рентгеновское излучение, состоящее из электронов, отрицательно заряженных частиц. Гамма-лучи сложены гамма-фотонами (гамма-частицами), обладающими высокой частотой и большой энергией. Это незаряженные частицы.

Альфа-, бета- и гамма-лучи исходят обычно от каждого мощного источника космического излучения или радиоактивного вещества, но в разных соотношениях. Энергия может расходоваться на какой-то один тип лучей преимущественно. В магнитном поле альфа- и бета-лучи отклоняются к полюсам, тогда как высокопроникающие гамма-фотоны не отклоняются, будучи нейтральными.

ГКИ порождается внутри нашей Галактики взрывами сверхновых звезд, а также некоторыми другими источниками. Близко по природе к ГКИ солнечное космическое излучение (СКИ), которое представляет собой высокоэнергетическую корпускулярную составляющую солнечного ветра. СКИ порождается вспышками в солнечной хромосфере, которые являются крупномасштабными взрывами плазменного вещества. За этими взрывами неизменно следуют такие разрушительные процессы, как выбросы в виде протуберанцев, магнитные бури и прочие.

СКИ нередко возникают в результате обычной солнечной активности, но тогда плотность потока и энергия частиц невелики и уравновешиваются ГКИ. При вспышках плотность излучения многократно возрастает, в тысячи раз превосходит ГКИ. Солнечное излучение состоит из разных частиц, включая нейтрино и электроны, но преобладают в нем протоны и альфа-частицы. СКИ почти целиком тормозится земными магнитосферой и атмосферой.

Солнце излучает, кроме прочего, как и многие другие звезды, инфракрасные и ультрафиолетовые электромагнитные волны и радиоволны.

Происходящие от разных источников инфракрасные, ультрафиолетовые, гамма-, рентгеновские лучи и радиоволны наравне с видимым светом составляют спектр электромагнитного излучения, в котором занимают определенное положение в зависимости от частоты и длины волны. Астрофизика Солнечной системы опирается на все эти излучения, порожденные Солнцем и отражаемые планетами, а также на собственные излучения планет (радио- и инфракрасное).

Немногим менее 50% солнечного излучения приходится на инфракрасную часть спектра. Это излучение характерно для любого тела с температурой в пределах от 250 °С до 5000 °С, поэтому собственным инфракрасным излучением обладают и планеты.

Рентгеновское и гамма-излучение порождаются процессами, высокими энергиями и большими температурами. Поэтому в нашей системе единственным источником этих лучей является Солнце, где подобные лучи рождаются в результате взаимодействия электронов с протонами (тормозное излучение) или с фотонами (так называемый обратный комптон-эффект). Примерно то же можно сказать про ультрафиолет, который излучается единственно Солнцем.

Излучение планет возникает за счет выделения тепла недрами, а также отражения солнечного теплового инфракрасного и радиоизлучения поверхностью планеты и верхним облачным слоем планетной атмосферы. Поскольку нагретость планет весьма мала, то сами они излучают преимущественно инфракрасные лучи и немного радиоволны, т.е. то же, что и отражают из солнечного спектра.

Относительно активно отражаются атмосферами планет ультрафиолетовые лучи, которые отчетливо высвечивают строение облачного покрова и воздушные течения. Рентгеновские лучи не достигают поверхности планет и не отражаются, поскольку захватываются магнитным полем, формируя радиационные пояса, или обтекают планеты с потоком солнечного ветра. То же можно сказать о ядрах водорода СКИ и ГКИ. Немногие из протонов и электронов, попадающие в атмосферу, полностью поглощаются ей и испытывают ядерные превращения (протоны).

Излучение космическое в биологии

Космическое излучение (космические лучи) способно вследствие ионизации молекул нарушать обменные процессы в протоплазме и даже разрушать белковые связи. Оно представляет опасность для космонавтов, а потому подлежит изучению радиобиологами. Протоны СКИ наиболее опасны, поскольку обладают большой энергией. Она в среднем составляет 100 МэВ, как показывают замеры потока нескольких последних 11-летних циклов солнечной активности, сопровождавшихся более чем 100 вспышками.

Также к космическим излучениям причисляют радиационные пояса Земли (РПЗ), состоящие из захваченных магнитосферой заряженных частиц, в первую очередь протонов. Пояса представляют собой области повышенного ионизирующего излучения на некоторой высоте над земной поверхностью.

Косми́ческое излуче́ние — электромагнитное или корпускулярное излучение, имеющее внеземной источник; подразделяют на первичное (которое, в свою очередь, делится на галактическое и солнечное) и вторичное. В узком смысле иногда отождествляют космическое излучение и космические лучи.