Источник постоянного напряжения

Содержание

Схема доработки блока питания компьютера


Тут все просто, так что не бойтесь. Первое что нужно сделать, так это разобрать между собой и соединить провода по цветам. Затем, согласно схемы подключить светодиоды. Первый слева будет индицировать наличие питания на выходе после включения. А второй справа будет гореть всегда, пока сетевое напряжение присутствует на блоке.
Подключить переключатель. Он будет запускать основную схему, замыканием зеленого провода на общий. И выключать блок при размыкании.
Также, в зависимости от марки блока, вам понадобится повесить нагрузочный резистор на 5-20 Ом между общим выходом и плюсом пять вольт, иначе блок может не запуститься из-за встроенной защиты. Так же если не заработает, будьте готовы повесить такие резисторы на все напряжения: «+3,3», «+12». Но обычно хватает одного резистора на выход 5 Вольт.

Начнем

Снимаем верхнюю крышку кожуха.
Откусываем разъемы питания, идущие к материнской плате компьютера и другим устройствам.
Распутываем провода по цветам.
Сверлим отверстия в задней стенке под клеммы. Для точности сначала проходим тонким сверлом, а затем толстым под размер клеммы.
Будьте осторожны, не насыпьте металлическую стружку на плату блока питания.

Вставляем клеммы и затягиваем.

Складываем черные провода, это будет общий, и зачищаем. Затем залуживаем паяльником, одеваем термоусадочную трубку. Припаиваем к клемме и надев трубку на спайку – обдуваем термофеном.

Так делаем со всеми проводами. Которые не планируете использовать – откусите под корень у платы.

Также сверлим отверстия по тумблер и светодиоды.

Устанавливаем и фиксируем горячим клеем светодиоды. Припаиваем по схеме.

Нагрузочные резисторы ставим на монтажную платы и привинчиваем винтами.
Закрываем крышку. Включаем и проверяем ваш новый лабораторный блок питания.

Не лишним будет замерить выходное напряжение на выходе каждой клеммы. Чтобы быть уверенным, что ваш старый блок питания вполне работоспособен и выходные напряжения не вышли за пределы допустимых.

Как вы могли заметить, я использовал два переключателя – один есть в схеме, и он запускает работу блока. А второй, который побольше, двухполюсный – коммутирует входное напряжение 220 В на вход блока. Его можно не ставить.
Так что друзья, собирайте свой блок и пользуйтесь на здоровье.

Общие характеристики блока питания ATX:

Блоки питания ATX, используемые в настольных компьютерах являются импульсными источниками питания с применением ШИМ-контроллера. Грубо говоря, это означает, что схема не является классической, состоящей из трансформатора, выпрямителя и стабилизатора напряжения. Ее работа включает следующие шаги:
а) Входное высокое напряжение сначала выпрямляется и фильтруется.
б) На следующем этапе постоянное напряжение преобразуется последовательность импульсов с изменяемой длительностью или скважностью (ШИМ) с частотой около 40кГц.
в) В дальнейшем эти импульсы проходят через ферритовый трансформатор, при этом на выходе получаются относительно невысокие напряжения с достаточно большим током. Кроме этого трансформатор обеспечивает гальваническую развязку между
высоковольтной и низковольтными частями схемы.
г) Наконец, сигнал снова выпрямляется, фильтруется и поступает на выходные клеммы блока питания. Если ток во вторичных обмотках увеличивается и происходит падение выходного напряжения БП контроллер ШИМ корректирует ширину импульсов и таким образом осуществляется стабилизация выходного напряжения.
Основными достоинствами таких источников являются:
— Высокая мощность при небольших размерах
— Высокий КПД
Термин ATX означает, что включением блока питания управляет материнская плата. Для обеспечения работы управляющего блока и некоторых периферийных устройств даже в выключенном состоянии на плату подаётся дежурное напряжение 5В и 3.3В.
К недостаткам можно отнести наличие импульсных, а в некоторых случаях и радиочастотные помех. Кроме того при работе таких блоков питания слышен шум вентилятора.

Модернизация блока питания

1. Разборка и чистка


Нужно разобрать и хорошо очистить блок питания. Лучше всего для этого подойдет пылесос включенный на выдув или компрессор. Нужно проявлять повышенную осторожность, т.к. даже после отключения блока питания от сети на плате остаются напряжения, опасные для жизни.

2. Подготавливаем провода

Отпаиваем или откусываем все провода, которые не будут использованы. В нашем случае, мы оставим два красных, два черных, два желтых, сиреневый и зеленый.
Если есть достаточно мощный паяльник — лишние провода отпаиваем, если нет — откусываем кусачками и изолируем термоусадкой.

3. Изготовление передней панели.

Сначала нужно выбрать место для размещения передней панели. Идеальным вариантом та будет сторона блока питания, с которой выходят провода. Затем делаем чертеж передней панели в Autocad или другой аналогичной программе. При помощи ножовки, дрели и резака из куска оргстекла изготавливаем переднюю панель.

4. Размещение стоек

Согласно отверстий для крепления в чертеже передней панели просверливаем аналогичные отверстия в корпусе блока питания и прикручиваем стойки, которые будут держать переднюю панель.

5. Регулировка и стабилизация напряжения

Для возможности регулировки выходного напряжения нужно добавить схему регулятора. Была выбрана знаменитая микросхема LM317 из-за ее простоты включения и невысокой стоимости.
LM317 представляет собой трехвыводный регулируемый стабилизатор напряжения, способный обеспечить регулировку напряжения в диапазоне от 1.2В до 37В при токе до 1.5А. Обвязка микросхемы очень простая и состоит из двух резисторов, которые необходимы для задания выходного напряжения. Дополнельно данная микросхема имеет защиту перегрева и перегрузки по току.
Схема включения и распиновка микросхемы приведены ниже:

Резисторами R1 и R2 можно регулировать выходное напряжение от 1.25В до 37В. Т.е в нашем случае, как только напряжение достигнет 12В, то дальнейшее вращение резистора R2 напряжение регулировать не будет. Чтобы регулировка происходила на всему диапазону вращения регулятора необходимо рассчитать новое значение резистора R2. Для расчета можно использовать формулу, рекомендуемую производителем микросхемы:

Либо упрощенная форма этого выражения:
Vout = 1.25(1+R2/R1)
Погрешность при этом получается очень низкой, так что вторую формулу вполне можно использовать.
Принимая во внимание полученную формулу можно сделать следующие выводы: когда переменный резистор установлен на минимальное значение (R2 = 0) выходное напряжение составляет 1.25В. При вращении ручки резистора выходное напряжение будет возрастать, пока не достигнет масимального напряжения, что в нашем случае составляет чуть меньше 12В. Другими словами максимум у нас не должен превышать 12В.
Приступим к расчету новых значений резисторов. Сопротивление резистора R1 возьмем равным 240 Ом, а сопротивление резистора R2 рассчитаем:
R2=(Vout-1,25)(R1/1.25)
R2=(12-1.25)(240/1.25)
R2=2064 Ома
Ближайшее к 2064 Ом стандарное значение сопротивления резистора равно 2 кОм. Значения резисторов будут следующие:
R1=240 Ом, R2=2 кОм
На этом расчет регулятора закончен.

6. Сборка регулятора

Сборку регулятора выполним по следующей схеме:

Ниже приведу принципиальную схему:

Сборку регулятора можно выполнить навесным монтажем, припаивая детали напрямую к выводам микросхемы и соединяя остальные детали при помощи проводов. Также можно специально для этого вытравить печатную плату или собрать схему на монтажной. В данном проекте схема была собрана на монтажной плате.
Еще обязательно нужно прикрепить микросхему стабилизатора к хорошему радиатору. Если радиатор не имеет отверстия для винта, тогда оно делается сверлом 2.9мм, а резьба нарезается тем же винтом М3, которым будет прикручена микросхема.
Если радиатор будет прикручен напрямую к корпусу блока питания, тогда необходимо изолировать заднюю часть микросхемы от радиатора кусочком слюды или силикона. В этом случае винт, которым прикручена LM317 должен быть изолирован с помощью пластиковой или гетинаксовой шайбы. Если же радиатор не будет контактировать с металлическим корпусом блока питания, микросхему стабилизатора обязательно нужно посадить на термопасту. На рисунке можно увидеть, как радиатор крепится эпоксидной смолой через пластину оргстекла:

7. Подключение

Перед пайкой необходимо установить светодиоды, выключатель, вольтметр, переменный резистор и разъемы на переднюю панель. Светодиоды отлично вставляются в отверстия, просверленные 5мм сверлом, хотя дополнительно их можно закрепить суперклеем. Переключатель и вольтметр держатся крепко на собственных защелках в точно выпиленных отверстиях Разъемы крепятся гайками. Закрепив все детали, можно приступать к пайке проводов в соответствии со следующей схемой:

Для ограничения тока последовательно с каждым светодиодом припаивается резистор сопротивлением 220 Ом. Места соединений изолируются при помощи термоусадки. Коннекторы припаиваются к кабелю напрямую или через переходные разъемы Провода должны быть достаточно длинными, чтобы можно было без проблем снять переднюю панель.

Перед подключением вольтметра, нужно внимательно разобраться со схемой подключения, рекомендованной производителем. Встречаются модели с внешним питанием и питанием от измеряемого напряжения. В нашем случае для питания индикатора необходимо было постоянное напряжение 9-12В. Для этих целей подойдет плата от любого блока питания, способная выдавать требуемое напряжение или зарядное устройство от старого телефона. Также возможно использовать одно из фиксированных напряжений блока питания ATX.

8. Последние штрихи

Первое, что мы можем сделать, так это приклеить четыре силиконовый ножки-подставки, чтобы не царапать стол, понизить уровень шума и способствовать лучшему охлаждению БП.

Далее, необходимо закрыть боковые грани между блоком питания и передней панелью полосками оргстекла. Ширина полосок должна быть такой же, как и высота стоек, которые мы использовали. Боковые панели соединяем с передней панелью при помощи дихлорэтана или клея. Для улучшения охлаждения сверлим отверстия напротив радиатора охлаждения. Так же, чтобы улучшить охлаждение нижнюю полоску можно не ставить. Наш лабораторный блок питания почти готов, но для начала проведем с ним некоторые тесты.

9. Испытания

Измерения: При помощи мультиметра нужно измерить напряжение между общим разъемом и разъемами с напряжением. При измерении регулируемого выхода измерения проводятся минимального и максимального напряжения. Результаты следующие:

Защита: Поскольку блок питания компьютера имеет защиту от перегрузки и короткого замыкания, мы можем это проверить. Для этого закорачиваем проводом общий разъем и разъем 5В или 12В. Блок питания должен отключиться. Для повторного его включения необходимо выключить и снова включить выключатель подачи 220В. Регулируемый выход защищен микросхемой LM317. Защита в зависимости от температуры микросхемы срабатывает при превышении тока нагрузки 2-3А.

10. Улучшение

В процессе эксплуатации было замечено, что на микросхеме LM317 рассеивается очень большое количество тепла и радиатор достаточно горячий. Поэтому дополнительно, при помощи двух шурупов, был установлен 12-ти вольтовый вентилятор от видеокарты. Питание вентилятора берется с выхода 12В, и желательно запитать его через дополнительный выключатель, чтобы вставить его только тогда, когда это необходимо.

Цветовая распиновка разъемов БП компьютера

В современных компьютерах применяются Блоки питания АТХ, а для подачи напряжения на материнскую плату используется 20 или 24 контактный разъём. 20 контактный разъем питания использовался при переходе со стандарта АТ на АТХ. С появлением на материнских платах шины PCI-Express, на Блоки питания стали устанавливать 24 контактные разъемы.

20 контактный разъем отличается от 24 контактного разъема отсутствием контактов с номерами 11, 12, 23 и 24. На эти контакты в 24 контактном разъеме подается продублированное уже имеющееся на других контактах напряжение.

Контакт 20 (белый провод) ранее служил для подачи −5 В в источниках питания компьютеров ATX версий до 1.2. В настоящее время это напряжение для работы материнской платы не требуется, поэтому в современных источниках питания не формируется и контакт 20, как правило, свободный.

Иногда блоки питания комплектуются универсальным разъемом для подключения к материнской плате. Разъем состоит из двух. Один является двадцати контактным, а второй – четырех контактный (с номерами контактов 11, 12, 23 и 24), который можно пристегнут к двадцати контактному разъему и, получится уже 24 контактный.

Так что если будете менять материнскую плату, для подключения которой нужен не 20, а 24 контактный разъем, то стоит обратить внимание, вполне возможно подойдет и старый блок питания, если в его наборе разъемов есть универсальный 20+4 контактный.

В современных Блоках питания АТХ, для подачи напряжения +12 В бывают еще вспомогательные 4, 6 и 8 контактные разъемы. Они служат для подачи дополнительного питающего напряжения на процессор и видеокарту.

Как видно на фото, питающий проводник +12 В имеет желтый цвет с черной долевой полосой.

Для питания жестких и SSD дисков в настоящее время применяется разъем типа Serial ATA. Напряжения и номера контактов показаны на фотографии.

Морально устаревшие разъемы БП

Этот 4 контактный разъем ранее устанавливался в БП для питания флоппи-дисковода, предназначенного для чтения и записи с 3,5 дюймовых дискет. В настоящее время можно встретить только в старых моделях компьютеров.

В современные компьютеры дисководы Floppy disk не устанавливаются, так как они морально устарели.

Четырех контактный разъем на фото, является самым долго применяемым, но уже морально устарел. Он служил для подачи питающего напряжения +5 и +12 В на съемные устройства, винчестеры, дисководы. В настоящее время вместо него в БП устанавливается разъем типа Serial ATA.

Системные блоки первых персональных компьютеров комплектовались Блоками питания типа АТ. К материнской плате подходил один разъем, состоящий из двух половинок. Его надо было вставлять таким образом, чтобы черные провода были рядом. Питающее напряжение в эти Блоки питания подавалось через выключатель, который устанавливался на лицевой панели системного блока. Тем не менее, по выводу PG, сигналом с материнской платы имелась возможность включать и выключать Блок питания.

В настоящее время Блоки питания АТ практически вышли из эксплуатации, однако их с успехом можно использовать для питания любых других устройств, например, для питания ноутбука от сети, в случае выхода из строя его штатного блока питания, запитать паяльник на 12 В, или низковольтные лампочки, светодиодные ленты и многое другое. Главное не забывать, что Блок питания АТ, как и любой импульсный блок питания, не допускается включать в сеть без внешней нагрузки.

Справочная таблица цветовой маркировки,
величины напряжений и размаха пульсаций на разъемах БП

Провода одного цвета, выходящие из блока питания компьютера, припаяны внутри к одной дорожке печатной платы, то есть соединены параллельно. Поэтому напряжение на всех провода одного цвета одинаковой величины.

Таблица цветовой маркировки проводов, выходных напряжений и размаха пульсаций БП АТХ
Выходное напряжение, В +3,3 +5,0 +12,0 -12,0 +5,0 SB +5,0 PG GND
Цветовая маркировка проводов оранжевый красный желтый синий фиолетовый серый черный
Допустимое отклонение, % ±5 ±5 ±5 ±10 ±5
Допустимое минимальное напряжение +3,14 +4,75 +11,40 -10,80 +4,75 +3,00
Допустимое максимальное напряжение +3,46 +5,25 +12,60 -13,20 +5,25 +6,00
Размах пульсации не более, мВ 50 50 120 120 120 120

Напряжение +5 В SB (Stand-by) – (провод фиолетового цвета) вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.

Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.

При измерении напряжений «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» – к контактам в разъеме. Можно проводить измерения выходных напряжений непосредственно в работающем компьютере.

Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современные компьютеры не устанавливают. Поэтому в блоках питания последних моделей это напряжение может отсутствовать.

Отклонение питающих напряжений от номинальных значений не должно превышать значений, приведенных в таблице.

При измерении напряжения на проводах блока питания, он должен быть обязательно подключен к нагрузке, например, к материнской плате или самодельному блоку нагрузок.

Установка в БП компьютера
дополнительного разъема для видеокарты

Иногда бывают, казалось бы, безвыходные ситуации. Например, Вы купили современную видеокарту, решили установить в компьютер. Нужный слот на материнской плате для установки видеокарты есть, а подходящего разъема на проводах, для дополнительного питания видеокарты, идущих от блока питания нет. Можно купить переходник, заменить блок питания целиком, а можно самостоятельно установить на блок питания дополнительный разъем для питания видеокарты. Это простая задача, главное иметь подходящий разъем, его можно взять от неисправного блока питания.

Сначала нужно подготовить провода, идущие от разъемов для соединения со сдвигом, как показано на фотографии. Дополнительный разъем для питания видеокарты можно присоединить к проводам, идущим, например, от блока питания на дисковод А. Можно присоединиться и к любым другим проводам нужного цвета, но с таким расчетом, чтобы хватило длины для подключения видеокарты, и желательно, чтобы к ним ничего больше не было подключено. Черные провода (общие) дополнительного разъема для питания видеокарты соединяются с черным проводом, а желтые (+12 В), соответственно с проводом желтого цвета.

Провода, идущие от дополнительного разъема для питания видеокарты, плотно овиваются не менее чем тремя витками вокруг провода, к которому они присоединяются. Если есть возможность, то лучше соединения пропаять паяльником. Но и без пайки в данном случае контакт будет достаточно надежным.

Завершается работа по установке дополнительного разъема для питания видеокарты изолированием места соединения, несколько витков и можно подключать видеокарту к блоку питания. Благодаря тому, что места скруток сделаны на удалении друг от друга, каждую скрутку изолировать по отдельности нет необходимости. Достаточно покрыть изоляцией только участок, на котором оголены провода.

Доработка разъема БП
для подключения материнской платы

При выходе из строя материнской платы или модернизации (апгрейде) компьютера, связанного с заменой материнской платы, неоднократно приходилось сталкиваться с отсутствием у блока питания разъема для подачи питающего напряжения с 24 контактами.

Имеющийся разъем на 20 контактов хорошо вставлялся с материнскую плату, но работать компьютер при таком подключении не мог. Необходим был специальный переходник или замена блока питания, что являлось дорогим удовольствием.

Но можно сэкономить, если немного самому поработать руками. У блока питания, как правило, есть много незадействованных разъемов, среди них может быть и четырех, шести или восьми контактный. Четырех контактный разъем, как на фотографии выше, отлично вставляется в ответную часть разъема на материнской плате, которая осталась незанятой при установке 20 контактного разъема.

Обратите внимание, как в разъеме, идущем от блока питания компьютера, так и в ответной части на материнской плате каждый контакт имеет свой ключ, исключающий неправильное подключение. У некоторых изоляторов контактов форма с прямыми углами, а у иных углы срезаны. Нужно разъем сориентировать, чтобы он входил. Если не получится подобрать положение, то срезать мешающий угол.

По отдельности как 20 контактный, так и 4 контактный разъемы вставляются хорошо, а вместе не вставляются, мешают друг другу. Но если немного сточить соприкасаемые стороны обоих разъемов напильником или наждачной бумагой, то хорошо вставятся.

После подгонки корпусов разъемов можно приступать к присоединению проводов 4 контактного разъема к проводам 20 контактного. Цвета проводов дополнительного 4 контактного разъема отличаются от стандартного, поэтому на них не нужно обращать внимания и соединить, как показано на фотографии.

Будьте крайне внимательными, ошибки недопустимы, сгорит материнская плата! Ближний левый, контакт №23, на фото черный, подсоединяется к красному проводу (+5 В). Ближний правый №24, на фото желтый, подсоединяется к черному проводу (GND). Дальний левый, контакт №11, на фото черный, подсоединяется к желтому проводу (+12 В). Дальний правый, контакт №12, на фото желтый, подсоединяется к оранжевому проводу (+3,3 В).

Осталось покрыть места соединения несколькими витками изоляционной ленты и новый разъем будет готов к работе.

Для того, чтобы не задумываться как правильно устанавливать сборный разъем в разъем материнской платы следует нанести с помощью маркера метку.

Как на БП компьютера
подается питающее напряжение от электросети

Для того чтобы постоянные напряжения появились на цветных проводах блока питания, на его вход нужно подать питающее напряжение. Для этого на стенке, где обычно установлен кулер, имеется трех контактный разъем. На фотографии этот разъем справа вверху. В нем есть три штыря. На крайние с помощью сетевого шнура подается питающее напряжение, а средний является заземляющим, и он через сетевой шнур при его подключении соединяется с заземляющим контактом электрической розетки. Ниже на некоторых Блоках питания, например на этом, установлен сетевой выключатель.

В домах старой постройки электропроводка выполнена без заземляющего контура, в этом случае заземляющий проводник компьютера остается не подключенным. Опыт эксплуатации компьютеров показал, что если заземляющий проводник не подключен, то это на работу компьютера в целом не сказывается.

Сетевой шнур для подключения Блока питания к электросети представляет собой трехжильный кабель, на одном конце которого имеется трех контактный разъем для подключения непосредственно к Блоку питания. На втором конце кабеля установлена вилка C6 с круглыми штырями диаметром 4,8 мм с заземляющим контактом в виде металлических полосок по бокам ее корпуса.

Если вскрыть пластмассовую оболочку кабеля, то можно увидеть три цветных провода. Желто — зеленый – является заземляющим, а по коричневому и синему (могут быть и другого цвета), подается питающее напряжение 220В.

Желто — зеленый провод в вилке С6 присоединяется к заземляющим боковым полоскам. Так что если придется заменять вилку, не забудьте об этом. Все о электрических вилках и правилах их подключения можете узнать из статьи сайта «Электрическая вилка».

Линейный блок питания

Традиционным блоком питания является линейный блок. Его конструкция состоит из автотрансформатора и понижающего трансформатора. Также имеется выпрямитель, который преобразует переменное напряжение в постоянное. Преимущественное большинство моделей укомплектовано выпрямителем, состоящим из одного или четырёх диодов, составляющих так называемые диодный мост. При этом есть и другие конструкционные схемы, но они используются гораздо реже. В некоторых моделях после выпрямителя может быть инсталлирован специальный фильтр, который стабилизирует колебания в сети. Как правило, эту функцию выполняет высокоемкостный конденсатор. В некоторых моделях предусмотрены фильтры высокочастотных помех, стабилизаторы тока и напряжения и многое другое. Простейший линейный блок питания, возможно, сделать своими руками, при этом, основным и самым дорогим компонентом является понижающий трансформатор – Т1.

Схема линейного блока питания

Среди мастеров, которые специализируются на ремонте и обслуживании электроники и радиотехники, самым востребованным линейным блоком питания считается модель с выходными характеристиками напряжения в регулируемом диапазоне 0-30 В и тока в диапазоне 0-5А, например — источник питания постоянного тока YIHUA-305D. Этот блок представляет собой высокоточный агрегат, с помощью которого можно легко и тонко настраивать параметры переменного тока и напряжения в установленных номинальных рамках. Оборудование функционирует в двойном режиме – цифровой индикатор одновременно показывает актуальные показатели напряжение и выходного тока. Кроме того, данная модель имеет режим защиты от короткого замыкания (кз), перегрузки по току и функцию самовосстановления.

Импульсный блок питания

В наши дни преимущественное большинство используемых блоков питания – это агрегаты импульсного типа. Эти блоки представляют собой фактически инверторную систему. Принцип их работы прост – происходит предварительное выпрямление входного напряжения, после чего оно преобразуется в импульсы с увеличенной частотой и необходимыми параметрами скважности. В импульсных блоках питания используются небольшие трансформаторы, которых более чем достаточно, поскольку увеличение частоты повышает эффективность трансформатора, а значит нет необходимости в больших габаритах. Нередко сердечник трансформатора изготавливается из ферромагнитных материалов, что, помимо всего прочего, существенно облегчает конструкцию.

Что же обеспечивает стабилизацию напряжения? Эту функцию берёт на себя отрицательная обратная связь, которая поддерживает выходное напряжение на одном уровне. При этом не учитывается величина нагрузки и колебания входного напряжения. Импульсный блок питания, также возможно сделать, своими руками, но в этом случае основными компонентами являются, линейный регулятор — LM7809, либо ШИМ контроллер TL494, а также импульсный трансформатор Т1.

Схема простого импульсного блока питания

Наиболее востребованным среди профессионалов импульсным агрегатом, который пользуется спросом и среди любителей, и среди профессионалов, считается импульсный блок питания MAISHENG MS305D – эталон компактности и удобства. Этот лабораторный источник импульсного типа идеально подходит для стабильной работы самых разных электронных схем и устройств. Конструкцией предусмотрена возможность настраивать параметры переменного тока в диапазоне от 0 до 5 А и напряжения от 0 до 30 В, защита от кз, перегрева и перегрузки по току. Данная модель укомплектована плавными регуляторами, которые облегчают точный подбор напряжения и тока. Прибор оснащен удобным цифровым дисплеем, на котором в реальном времени отображаются параметры напряжения и переменного тока.

Что же выбрать? Преимущества и недостатки линейных и импульсных блоков питания.

На сегодняшний день импульсные блоки питания используются повсеместно, и они активно вытесняют с рынка менее удобные линейные агрегаты. Теме не менее, только в работе можно оценить сильные и слабые стороны импульсных и трансформаторных блоков питания.

К достоинствам импульсных агрегатов нужно отнести:
• Высокий коэффициент стабилизации;
• Высокий коэффициент полезного действия;
• Более широкий диапазон входных напряжений;
• Более высокая мощность по сравнению с линейными устройствами.
• Отсутствие чувствительности к качеству электропитания и частоте входного напряжения;
• Небольшие габариты и достойная транспортабельность;
• Доступная цена.

К явным недостаткам импульсных источников питания стоит отнести:
• Наличие импульсных помех;
• Сложность схем, что негативно сказывается на надежности;
• Ремонт далеко не всегда удается произвести своими руками.

Трансформаторные блоки питания также имеют ряд плюсов, среди которых:
• Простота и надежность конструкции;
• Высокая ремонтопригодность и дешевизна запчастей;
• Отсутствие радиопомех;

Как вы понимаете, у трансформаторных блоков питания есть и недостатки, среди которых:
• Большой вес и габариты, что часто делает транспортировку очень неудобной;
• Обратная зависимость между КПД и стабильностью выходного напряжения;
• Металлоемкость конструкции.

Лабораторные блоки питания на сегодняшний день представлены огромным ассортиментом агрегатов. Спросом пользуются и импульсные, и трансформаторные блоки. Удачный выбор оборудования напрямую зависит от того, какие цели вы преследуете, приобретая блок питания. Если вы хотите всегда иметь под рукой надежный агрегат с отсутствием радиопомех, который редко ломается и легко поддается ремонту, тогда стоит обратить внимание на трансформаторные блоки питания. Если же для вас важна мощность и коэффициент полезного действия, тогда вам стоит подробнее изучить импульсные устройства.

Наиболее мощные лабораторный блоки питания представлены импульсными моделями:

Лабораторный блок питания (источник питания) MAISHENG MP5060D (50В, 60А) 3000 Вт
Лабораторный блок питания (источник питания) MAISHENG MP5050D (50В, 50А) 2500 Вт
Лабораторный блок питания (источник питания) MAISHENG MP6030D (60В, 30А) 1800 Вт
Лабораторный блок питания (источник питания) MAISHENG MP3060D (30В, 60А) 1800 Вт

Источники питания постоянного тока

Постоянный ток получают посредством таких устройств:

  1. гальванические элементы — батарейки и аккумуляторы: разделение положительных и отрицательных зарядов осуществляется за счет химического взаимодействия;
  2. генераторы постоянного тока: превращают механическую энергию в электрическую;
  3. выпрямители: преобразуют переменный ток в постоянный;
  4. фотоэлементы (солнечные батареи) и термоэлементы: превращают в электричество энергию, соответственно, света и тепла.

Наиболее распространены первые три разновидности, они и будут рассматриваться подробно.

Батарейки

Получение разности потенциалов химическим путем удобно показать на простом примере — цинковом стержне, помещенном в серную кислоту. Положительно заряженные атомы цинка притягивают к себе отрицательные ионы кислоты и под их воздействием отрываются от стержня.

Последний в результате этого становится отрицательно заряженным, кислота же приобретает положительный заряд.

Для подключения к положительному полюсу Алессандро Вольта, первооткрыватель данного явления, опустил в раствор медный стержень. При подключении нагрузки, электроны с цинкового стержня перемещаются через нее к медному.

Недостаток данного решения — образование газообразного водорода на медной пластине, затрудняющего работу элемента. Поэтому в современных батарейках вместо меди применяют другие материалы, например, графит в оболочке из диоксида марганца (последняя поглощает газ). Серная кислота заменена раствором нашатырного спирта.

Применяются и другие сочетания материалов, например:

  • марганец и олово;
  • марганец и магний;
  • свинец и цинк;
  • свинец и кадмий;
  • свинец и хлор;
  • цинк и хром.

По характеру работы батарейки из разных материалов отличаются. У одних ЭДС по мере разряда постепенно снижается, у других — долго остается постоянной, затем резко падает.

Аккумулятор

Емкость аккумулятора, в отличие от батарейки, после разрядки можно восполнить подключив к источнику электрической энергии.

Материалы также используются разные. К примеру, в автомобильных аккумуляторах аноды делают из двуокиси свинца, катоды — из губчатого свинца. Роль электролита играет раствор H2SO4.

Указаны материалы так называемой активной массы электродов. Основание же их является свинцово-кальциевым или свинцово-сурьмяным.

При разрядке происходит такое же взаимодействие, как и в элементе Вольта: отрицательные ионы серной кислоты притягиваются к положительным атомам свинца с образованием сульфата свинца, так что электрод приобретает отрицательный заряд, электролит — положительный.

Попутно из освободившегося водорода и кислорода, выделяющегося из двуокиси свинца, образуется вода, что приводит к снижению плотности электролита. По этому параметру определяют уровень заряда аккумулятора.

Автомобильный аккумулятор

При зарядке происходит обратный процесс: сульфат свинца и вода превращаются в серную кислоту, свинец и диоксид свинца.

Литий-ионный аккумулятор

Мобильные телефоны, ноутбуки, прочие электронные устройства, а также электромобили сегодня оснащают литий-ионными аккумуляторами. Электроды такого источника изготавливают путем нанесения катодного материала на фольгированный алюминий и анодного — на медную фольгу.

Заряд переносится положительно заряженными атомами лития. Они обладают способностью встраиваться в кристаллическую решетку различных материалов — солей и оксидов металлов, графита. При этом образуется химическая связь, например, в оксиде марганца — LiMnO2, в графите — LiC6.

В качестве отрицательной пластины сегодня применяют графит, в первых версиях это были металлический литий и каменноугольный кокс.

Катодные материалы используются такие:

  • лития кобальтат (LiCoO2);
  • литий-феррофосфат (LiFePO4);
  • растворы на основе никелата лития (в твердом агрегатном состоянии);
  • шпинель литий-марганцевая (LiMn2O4).

Достоинства литий-ионных аккумуляторов:

  • значительная емкость;
  • низкий саморазряд;
  • мизерный эффект памяти (практически нулевой).

Эти источники комплектуются контроллерами разряда. Устройство отключает батарею при перегреве и при сокращении разряда ниже критического уровня.

Генераторы

Генератор DC в основном устроен так же, как и переменный: в магнитном поле вращается ротор с обмотками и в последних, из-за постоянного изменения магнитного потока наводится ЭДС (закон электромагнитной индукции). Разница состоит в наличии коллектора — приспособления из полуколец, благодаря которому на токосъемные щетки всегда подается ЭДС с одной полярностью.

В каждом витке рамки ЭДС пульсирует — меняется при вращении от нуля до максимума. Применением обмотки из множества витков, расположенных по определенному закону, добиваются сглаживания пульсаций.

Выпрямители

Преобразование переменного тока в DC осуществляется посредством полупроводниковых приборов с односторонней проводимостью — диодов. Существует несколько разновидностей выпрямителей.

Однополупериодные — простейший вариант преобразователя, состоящий из единственного диода. Последний пропускает ток только в течение полупериода, когда полярности входного напряжения и его собственная совпадают.

Для сглаживания пульсаций используется конденсатор: пока диод пропускает ток, он заряжается, а в течение второго полупериода отдает заряд. При частоте входного переменного тока 50 Гц требуемая емкость конденсатора слишком велика (от 2000 до 5000 мкФ).

Поэтому на таких частотах выпрямители данного типа применяют крайне редко. Импульсные блоки питания дают на выходе переменный ток намного большей частоты — 10-15 кГц. Здесь использование однополупериодных выпрямителей вполне уместно. Таким блоком питания является, например, зарядное устройство мобильного телефона.

Недостатки однополупериодного выпрямителя:

  • нерациональное использование трансформатора;
  • значительное обратное напряжение на диоде.

Двухполупериодные пропускают ток в обоих полупериодах, есть две разновидности таких выпрямителей:

  1. схема со средней точкой. Это два однополупериодных выпрямителя, подключенные параллельно. Для работы схемы нужен особый трансформатор со средним выводом из вторичной катушки: с одной части катушки ток подается на нагрузку по 1-му диоду, со второй во втором полупериоде — по 2-му. Выпрямитель применялся, когда полупроводниковые приборы были дороги и сокращение их числа вдвое оправдывала использование более металлоемкого трансформатора. Сегодня рациональнее применять мостовую схему на 4-х диодах;
  2. мостовая схема. Представляет собой 4 диода, подключенные в виде квадрата. В одну диагональ включается нагрузка, на другую — подается переменное напряжение. Для сглаживания пульсаций используется LC-фильтр или только конденсатор.

Мостовая схема относится к наиболее распространенным, ее достоинства:

  • не требуется трансформатор со средним выводом, возможно подключение напрямую к электросети;
  • обратное напряжение на диодах вдвое меньше, чем в однополупериодном аналоге.

Характеристики

Батареи и аккумуляторы характеризуются такими основными параметрами:

  1. номинальное напряжение;
  2. номинальная емкость. Измеряется в ампер-часах (А*ч) или миллиампер-часах (мА*ч);
  3. номинальный ток нагрузки;
  4. саморазряд. Обозначает, как быстро уменьшается заряд в батарее при ее бездействии. К примеру, саморазряд литий-ионного аккумулятора при температуре +250С составляет 1,6% в мес.;
  5. температура эксплуатации.

Для автомобильных аккумуляторов важны:

  1. резервная емкость. Время, в течение которого источник при падении напряжения до 10,5 В способен выдавать ток в 25 А. В норме составляет не менее 90 мин;
  2. ток холодной прокрутки. Сила тока, генерируемая аккумулятором при температуре -180С в течение 10 сек. с напряжением на клеммах не ниже 7,5 В. Этот параметр характеризует способность устройства запустить двигатель автомобиля зимой.

Пульсирующий ток на выходе выпрямителя принято раскладывать на постоянную и переменную составляющую, при этом он характеризуется:

  • максимальным и минимальным значением Imax и Imin;
  • амплитудой переменной составляющей Iac;
  • величиной постоянной составляющей Idc;
  • коэффициентом пульсаций (отношение амплитуды переменной составляющей к величине постоянной).

Регулируемые источники

Регулируемый источник состоит из таких компонентов:

  • понижающий трансформатор;
  • выпрямитель;
  • сглаживающий фильтр (устраняет пульсации);
  • стабилизатор постоянного напряжения.

Стабилизатор постоянного напряжения — интегральная микросхема, поддерживающая выходное напряжение на одном уровне, независимо от его колебаний на входе.

Колебаний обусловленных перепадами напряжения в электросети, изменением тока нагрузки или температуры. Блоки с такими стабилизаторами называют регулируемыми.

Сегодня распространены импульсные блоки питания, они состоят из таких компонентов:

  • входной выпрямитель;
  • инвертор;
  • понижающий высокочастотный трансформатор;
  • выходной выпрямитель.

Инвертор превращает предварительно выпрямленный ток снова в переменный, но при этом значительно повышает его частоту — до 10-15 кГц. При такой частоте, габариты трансформатора и потери в нем значительно сокращаются. Инвертор состоит из ключевых транзисторов, управляемых микросхемой.

Этот же принцип реализован в сварочных инверторах, чем и объясняется их компактность.

Существует множество микросхем-стабилизаторов с разными свойствами. К примеру, микросхема LM317 рассчитана на ток до 1,5 А и позволяет регулировать напряжение на выходе. Более мощный стабилизатор — микросхема LM350.