GSM термометр своими руками

Сообщества ›
Электронные Поделки ›
Блог ›
Цифровой термометр в панель приборов

Доброе время суток!
На создание героя данной статьи меня подвиг драйвовчанин MEHANIK1, захотев встроить устройство с индикацией температуры в одну из заглушек панели приборов, находящихся в седанах Chevrolet Lacetti справа и слева от штатных часов…
В Инете мной была найдена и собрана схема цифрового термометра на базе МК ATtiny2313. В качестве датчиков температуры в нем использованы DS18B20. В качестве индикатора «выступает» RL-T3610 – индикатор зеленого цвета с ОК (общим катодом) /Спасибо Voknihc за внимательность/.
Исходная схема выглядит так:

Рис.1 Исходная схема

Прошивка, скачанная в комплекте, умеет по очереди (с задержкой 1 сек) отображать показания датчиков, подключенных к МК по шине 1-Wire. Количество подключаемых датчиков (по описанию автора программы) – 8, хотя в даташите на датчик ограничения по количеству датчиков на шине я не нашел (может, плохо искал? :-))…
Подключаются датчики на шину следующим образом:

Рис.2 Датчики на шине 1-Wire

Видео работы этого варианта…

В общем, заказчик остался не очень удовлетворен результатом, а также по отзывам народа, собиравшего данную схему до меня, у данного варианта есть один существенный недостаток – повышенная нагрузка на выходы, управляющие катодами разрядов, что со временем может повлечь неравномерность свечения разрядов и сегментов индикатора.
Исходя из этого, была найдена статья с описанием недостатков первого варианта и «усиленной» схемой:

«Железо» понравилось, но прошивка под него была написана автором только под один датчик, а мой заказчик просил возможность подключения трех датчиков, поэтому, сей вариант прошивки отпал.
В конечном итоге я нашел еще один вариант прошивки, в исходнике которой описана возможность подключения более 1 датчика. Это — самое то!
Итак, техзадание:
1. Минимально возможные габариты «ширина-высота» дисплея для встраивания термометра в заглушку справа (слева) от часов Chevrolet Lacetti (седан);
2. Переключение между показаниями датчиков не автоматически, а вручную;
3. Поскольку данный девайс будет использоваться в автомобиле, необходимо уменьшение яркости индикатора при включении габаритов;
4. Работа устройства с тремя датчиками.

Исходя из задания, а также, для удобства разводки плат, на основе предыдущей схемы был разработан собственный вариант:

Для минимизации габаритов устройства был выбран вариант из двух плат, соединенных между собой. Индикатор монтируется к ним таким образом, что обе платы спрятаны за ним и не выступают за его габариты:

В сравнении с коробком спичек

В сравнении с коробком спичек

Платы размером 31х22,5 мм получились вот такие:

В прошивке реализован следующий алгоритм индикации:
1. Габариты выключены:
— Нажатие (обычное короткое — до 1 сек) на кнопку приводит к переключению на следующий датчик (переключаются по кругу). Сначала отображается номер датчика, потом — его показания.
— Яркость индикатора максимальна.
2. Габариты включены:
Реализовано регулирование яркости свечения индикатора и два режима отображения:
Режимы переключаются длинным (держать более 1 сек) нажатием кнопки.
2.1. Режим отображения температуры (тут все, как и при выключенных габаритах)
2.2. Режим регулировки яркости :
— в этом режиме отображается уровень яркости от 9 до 0. Значения изменяются нажатием кнопки циклически.
— При отключении габаритов индикация автоматически возвращается к показаниям температуры текущего датчика.
Номер текущего датчика, а также уровень яркости при включенных габаритах запоминаются в энергонезависимой памяти…
Варианты индикации на дисплее (скрины из Протеуса):
1. Количество подключенных датчиков:

2. Номер текущего датчика:

3. Температура более 100 градусов Цельсия:

4. Температура от 0 до 100 градусов Цельсия:

5. Температура ниже нуля, до -10 градусов Цельсия:

6. Температура ниже -10 градусов Цельсия:

7. Максимальная яркость подсветки:

8. Минимальная яркость подсветки:

Ввиду особенностей работы датчиков температуры, яркость свечения индикатора можно снизить, максимум, на 56-60% от максимальной. При дальнейшем уменьшении яркости становятся заметны яркие вспышки индикатора, обусловленные задержками при опросе датчиков (получение данных от датчика в 12-битном разрешении занимает около 750 мс).
Видео работы конечного варианта устройства:

Ссылка на файло для желающих сделать своими руками:
— для индикатора с ОК — yadi.sk/d/tNKHp1nbpSPPW
— для индикатора с ОА — yadi.sk/d/HtXHaD7ux5SAF (только прошивка. Остальные материалы — в архиве для индикатора с ОК выше).
Вот, вроде и все…
Всем мира и удачи!

Простой цифровой термометр своими руками с датчиком на LM35

Для изготовления этого простого цифрового термометра необходим температурный датчик LM35, цифровой вольтметр (любой недорогой китайский цифровой мультиметр), два маломощных диода, один резистор и несколько батареек (либо элемент типа «Крона»). Из этих компонентов можно быстро собрать простой цифровой многофункциональный термометр с диапазоном температур от -40 до +150 градусов Цельсия. Для измерения только положительных температур диоды и резистор не нужны.

Точность измерения температуры 0,1 градуса Цельсия, т.е. термодатчик для многих применений можно назвать прецизионным. Для этого универсального цифрового термометра использованы полупроводниковые датчики температуры LM35DZ/NOPB для температуры от 0 до +100°C и LM35CZ/NOPB для температуры от -40 до +110°С в корпусах TO-92. В datasheets некоторых производителей LM35 указана верхняя измеряемая температура +150 градусов Цельсия.

Термометр для измерения положительных температур

Такой электронный измеритель температуры можно быстро сделать своими руками. Достаточно подключить Крону (или три пальчиковые батарейки, соединенные последовательно) к датчику, а датчик к вольтметру, как показано на рисунке – и термометр готов. Датчик потребляет от источника питания ток не более 10 мкА, поэтому батарейку можно не отключать длительное время.

Схема подключения LM35 для измерения плюсовой температуры и «распиновка» датчика

Диапазон использования такого цифрового датчика очень широк:
— термометр комнатный
— термометр уличный
— термометр для воды и других жидкостей
— термометр для инкубатора
— термометр для бани и сауны
— термометр для аквариума
-термометр для холодильника
— термометр для автомобиля
— цифровой многоканальный термометр и т.д.

Термометр уличный электронный

Схема цифрового термометра для измерения температуры от минус 40 до плюс 110 градусов Цельсия с однополярным источником питания. Диоды маломощные кремниевые – КД509, КД521 и т.д. Диапазон измерения тестера надо устанавливать на 2 вольта (2000 мВ), последняя цифра будет показывать десятые доли градуса, ее следует отделить точкой.

Для воды и других жидкостей датчик термометра следует сделать герметичным, для этого его можно залить силиконовым герметиком, либо поместить в медную трубку с внутренним диаметром 6 мм со сплющенным и запаянным концом. Запаянный конец трубки надо заполнить термопастой. Затем припаять к датчику провода, изолировать контакты и вставить датчик в трубку – протолкнуть до упора, чтобы он находился в теплопроводящей пасте. Таким образом получаем щуп-термометр. Если инерционность термометра не является критичной, датчик можно вставить в пластиковую трубку и загерметизировать ее концы.

Схема электронного термометра с двумя датчиками

Термометр легко сделать многоканальным. Для этого можно использовать как механические, так и электронные аналоговые переключатели. Ниже, для примера приведена схема двухканального термометра для плюсовых температур с использованием «перекидного» тумблера.

Этот прибор показывает уличную температуру, датчик висит за закрытой форточкой. Время на сборку заняло 30-40 минут.

Так выглядит прибор сзади. Собран градусник по схеме с одним источником питания, двумя диодами и резистором. Поскольку отрицательное смещение на диодах составляет порядка 2-х вольт, а минимальное напряжение питания датчика 4 вольта, в качестве БП использованы спаянные последовательно 5 батареек ААА. Датчики припаяны к неэкранированным проводам длиной 2,5 метра.

На этом фото показаны два термометра. Датчик первого размещен в холодильной камере, а второго — в морозильной камере этого же холодильника. Точка на индикаторе мультиметра нарисована черным маркером.

Измерил температуру своего тела – полный порядок. Подключил точно такой же другой прибор (без точки на индикаторе) к этому же датчику и огорчился, прибор «врет» в большую сторону на 0,2 градуса. В кипящей воде не пробовал: не готовы герметичные щупы. Перед замерами батарейки в обоих приборах заменил на одинаковые новые.

На основе этого термодатчика можно сделать простой регулятор температуры, добавив компаратор с регулируемым или фиксированным порогом срабатывания и силовой ключ (оптосимистор, реле …), который будет включать нагреватель. Для построения термостата (инкубатора, например) такая схема не пойдет, LM35 необходимо подключать к устройству с функцией ПИД-регулятора, например, ТРМ210.

  • Напряжение на светодиоде
  • Схема светодиодной лампы на 220в
  • Лампа ЭРА А65 13Вт
  • Как паять светодиодную ленту
  • Светодиодная лента на 220 в
  • Простое зарядное устройство
  • Разрядное устройство для автомобильного аккумулятора
  • Схема драйвера светодиодов на 220
  • Подсветка для кухни из ленты
  • Подсветка рабочей зоны кухни
  • Сделай сам: электронный термометр своими руками

    Сегодня мы расскажем, как своими руками сделать электронный термометр из трех деталей.
    Очень простой и достаточно точный термометр можно сделать, если у вас случайно завалялся старый стрелочный амперметр со шкалой 100 мкА.
    Для этого потребуется батарейка и всего две детали.
    Температура измеряется датчиком LM 35. Этот интегральный кремниевый датчик включает в себя термочувствительный элемент — первичный преобразователь температуры и схему обработки сигнала, выполненные на одном кристалле и заключенные в пластмассовый корпус, такой, как, например, у КТ 502 (ТО- 92). У датчика LM 35 есть конструктивная разновидность с теми же параметрами, но иной цокалевкой и теплоотводом, что очень удобно для контактных измерений температуры.
    Выходное напряжение датчика LM 35 пропорционально шкале Цельсия (10мВ/ С). При температуре 25 градусов этот датчик имеет на выходе напряжение 250 мВ, а при 100 градусов на выходе 1,0 В.
    Обозначение датчика несколько необычно. Цоколевка приведена на рисунке.
    На схеме датчик изображают прямоугольником с обозначением типа прибора и нумерацией выводов.
    Схема термометра приведена на рисунке и столь проста, что не требует пояснений.
    Собранный термометр должен быть откалиброван.
    Включите схему. Датчик LM 35 плотно прижмите к резервуару ртутного градусника, например с помощью изоленты, укутайте место соединения или просто положите все под подушку. Так как любые тепловые процессы инерционны, придется подождать с полчаса или больше, чтобы температуры датчика и градусника выровнялись, затем потенциометром установите стрелку микроамперметра на цифру, соответствующую температуре градусника. Вот и все. Термометром можно пользоваться.
    В авторском варианте для тарировки был использован градусник от 0 до 50 градусов Цельсия с ценой деления 0,1 градус, поэтому термометр получился достаточно точным.
    К сожалению, найти такой градусник проблематично. Для грубой тарировки можно просто положить датчик рядом с термометром, измеряющем скажем температуру в помещении, подождать часа два и выставить нужную температуру на шкале микроамперметра.
    Если точный градусник все же найдется, то в качестве индикатора вместо стрелочного прибора можно использовать цифровой мультиметр, например китайский ВТ-308В, тогда показания температуры можно будет считывать до десятых долей градуса.
    Для тех, кто хочет ознакомиться с интегральными датчиками подробно- простите сайт kit-e.ru или rcl-radio.ru (искать LM 35).

    Автор статьи “Сделай сам: электронный термометр своими руками” Георгий Меньшиков

    Смотрите так же:

    • стабилизатор температуры охлаждающей жидкости автомобиля своими руками
    • сделай сам: сигнализатор ближнего света своими руками
    • светодиодные дневные огни для авто
    • датчик влажности почвы своими руками
    • самодельный звуковой дубликатор поворотов
    • универсальная схема плавного отключения света в салоне авто на конденсаторе
    • Ваша статья будет здесь если Вы ее нам пришлете 🙂 samodelkainfo@yandex.ru

    • Об авторе
    • Новые самоделки автора

    Новые самоделки автора Георгий Меньшиков (Смотреть все)

    • Самодельный светильник в стиле ретро — 9 июня 2018
    • Как оцифровать слайды своими руками — 13 апреля 2018
    • Микрощуп для мультиметра своими руками — 21 марта 2018

    На замену не совсем удобным аналоговым измерителям температуры, в основе работы которых лежит свойство жидкости расширяться и сжиматься, промышленность предложила дискретные устройства. Эти совсем несложные приборы обладают рядом неоспоримых преимуществ. Купить измеритель можно практически в любом магазине бытовой или климатической техники, но гораздо интереснее изготовить электронный термометр с выносным датчиком своими руками.

    Суть устройства

    Термометр, разговорный аналог — градусник, предназначен для измерения температуры окружающей среды. Первое устройство было изобретено в 1714 году немецким физиком Д. Г. Фаренгейтом. В основе своей конструкции он использовал прозрачную запаянную колбу, внутри которой находился спирт. После в качестве жидкости учёный применил ртуть. Но шкала аналогового измерителя, существующая и по сей день, была разработана лишь только через 30 лет шведским астрономом и метеорологом Андерс Цельсием. За начальные точки он предложил взять температуру тающего льда и кипения воды.

    Интересным фактом является то, что изначально числом 100 была отмечена температура таяния льда, а за ноль взята точка кипения. Впоследствии шкалу «перевернули». По некоторым мнениям это сделал сам Цельсий, по другим — его соотечественники ботаник Линней и астроном Штремер.

    Вскоре изготовление ртутных измерителей было широко налажено производством в промышленных масштабах. Со временем ртуть из-за своей ядовитости была заменена на спирт, а затем и вовсе был предложен новый тип устройства — цифровой. Сегодня, пожалуй, градусник стал неотъемлемым атрибутом любого жилища. По совету Всемирной организации здравоохранения была принята Минаматская конвенция, направленная на постепенный вывод из обихода ртутных градусников. Согласно ей в 2022 году использование ртути в измерителях будет полностью прекращено.

    Поэтому из-за своих отличных характеристик термометр с цифровой схемой практически не имеет конкурентов. Предлагаемые в продаже спиртовые приборы проигрывают ему по точности и удобству восприятия данных.

    Электронные модели могут располагаться в любом месте, ведь в контролируемом помещении необходимо расположить только небольшой датчик, подключённый к устройству. Этот тип используется во многих технологических процессах промышленности, например, строительных, аграрных, энергетических. С их помощью контролируется:

    • температура воздуха в производственных и жилых зданиях;
    • проверка нагрева сыпучих продуктов;
    • состояние вязких материалов.

    Принцип работы

    Перед тем как непосредственно приступить к изготовлению электронного термометра, следует разобраться в принципе его действия и определиться, из каких узлов будет состоять конструкция. Промышленно выпускаемые электронные градусники различаются по своим размерам и назначению. Но все они построены на однотипном принципе действия.

    Проводимость материала изменяется в зависимости от температуры окружающей среды. Основываясь на этом и проектируется схема электронного градусника. Так, чаще всего в конструкции применяется термопара. Это электронный прибор, стоящий из двух сваренных между собой металлов. На поверхности каждого из них имеется контактная площадка, подключённая к измерительной схеме. При нагревании или охлаждении контактов возникает термоэлектродвижущая сила, появление и изменение которой регистрируется платой электроники.

    В устройствах нового поколения вместо термочувствительного элемента используется кремниевый диод. Полупроводниковый радиоэлемент, у которого наблюдается зависимость вольт-амперной характеристики от температурного воздействия. Иными словами, при прямом включении (направление тока от анода к катоду) значение падения напряжения на переходе изменяется в зависимости от нагрева полупроводника.

    Обработанные данные выводятся на дисплей, с которого уже визуально снимаются пользователем. Цифровые градусники позволяют измерять изменения температуры в диапазоне от -50 ° С до 100 ° С.

    Всего же в конструкции простого термометра можно выделить пять блоков:

    1. Датчик — устройство, изменяющее свои параметры в зависимости от величины воздействующей на него температуры.
    2. Измерительные провода — используются для выноса датчика и его расположения в различных местах, требующих контроля над температурой. Чаще всего это небольшого сечения в диаметре проводники, даже необязательно экранированные.
    3. Плата электроники — содержит блок анализатора, фиксирующий изменения приходящего от датчика сигнала, а затем передающий его на экран.
    4. Дисплей — монохромный или цветной экран, предназначенный для отображения данных об измеренной температуре.
    5. Блок питания — собирается на типовых для радиоэлектроники интегральных микросхемах. Используется для стабилизации и преобразования питания, подающегося на все узлы платы.

    Особенности изготовления

    Человеку, увлекающемуся радиолюбительством, сделать электронный термометр своими руками по схеме не доставит трудностей, но в то же время обычному потребителю понадобится иметь хотя бы навыки паяния. Сегодня существует довольно много различных схем, отличающихся как сложностью повторения, так и дефицитностью радиодеталей.

    При выборе схемы учитывают характеристики, которые она сможет обеспечить будущему измерительному устройству. В первую очередь — это диапазон измеряемых температур, а во вторую – погрешность. Конструктивно можно собрать проводную и беспроводную модель. При сборке второго типа используется радиомодуль, значительно удорожающий изделие.

    Из-за использования чувствительных специализированных микросхем собирать навесным монтажом схему вряд ли получится. Поэтому предварительно изготавливается печатная плата. Делать её лучше из одностороннего фольгированного стеклотекстолита методом «лазерно-утюжной технологии».

    Суть метода заключается в том, что с помощью, например, Sprint Layout, рисуется печатная схема устройства и распечатывается в зеркальном отображении в масштабе 1:1 на лазерном принтере. Затем, приложив отпечатанный рисунок изображением вниз к фольгированному слою, проглаживают чертёж разогретым утюгом. Из-за особенностей тонера изображение линий перенесётся на стеклотекстолит. Далее плата погружается в ванную с реактивом, например, FeCl3.

    В качестве индикатора можно использовать светодиодную матрицу, но лучше приобрести любой монохромный экран. Простой экран можно взять буквально за «копейки», например, подойдёт от старых системных блоков, выполненных в форм-факторе АТ. Если планируется конструкция с выносным датчиком, то неплохим вариантом будет использование шлейфа с диаметром проводника от 0,3 мм2, но в принципе подойдёт любой провод. При этом чем вынос датчика больше, тем большего сечения нужен и провод.

    В схемотехнике некоторых термометров используются микроконтроллеры. Их применение позволяет упростить электрическую схему и повысить функциональность, но при этом требует навыков программирования и умения загружать прошивку. Для этого понадобится программатор, который можно также спаять самостоятельно, например, для LPT из пяти проводов.

    Простой термометр

    Конструкция простого термометра состоит всего из трёх деталей и тестера. В качестве датчика температуры в схеме используется LM35. Это интегральный прибор с калиброванным выходом по напряжению. Амплитуда на выходе датчика пропорциональна температуре. Точность измерений составляет 0,75° C. Запитывать интегральную микросхему можно как от однополярного источника, так и двухполярного. Предел измерений от -55 ° до 150° C.

    В качестве мультиметра можно использовать стрелочный или цифровой прибор. К датчику согласно схеме подключают источник питания. Например, КРОНу или три соединённых последовательно пальчиковых батарейки. Измеритель же подключают к клеммам V и COM и переводят в режим измерения температуры. Потребление датчика при работе не превышает 10 мкА.

    Диапазон измерения мультиметра устанавливается на два вольта. Отображённый на экране результат и будет соответствовать измеряемой температуре. Последняя цифра в числе обозначает десятые доли градуса.

    При желании устройство можно сделать двухканальным. Для этого дополнительно необходимо будет изготовить механический или электронный переключатель.

    Цифровая схема

    Одна из самых простых схем состоит всего из нескольких элементов. В основе конструкции лежит использование датчика, выдающего значение температуры в цифровом коде. Стоимость термодатчика LM 335 не превышает 50 центов, при этом после калибровки его точность измерения составляет от 0,3 ° до 1,5° C. Датчик может измерять температуру от — 40 ° до 100° C. Выпускается он в двух корпусах — TO-92 и SOIC. В качестве аналога можно использовать отечественную микросхему К1019ЕМ1.

    При монтаже длина соединительных проводов может достигать пяти метров. Калибровка схемы осуществляется изменением напряжения, подаваемым на вывод один. Необходимое значение рассчитывается по формуле:

    Uвых = Vвых1 * T / To, где:

    • Uвых – напряжение на выходе микросхемы;
    • Uвых1 – напряжение на выходе при эталонной температуре;
    • T и To – измеряемая и эталонная температура.

    Напряжение, формирующее выходной сигнал, зависит от температуры, поэтому питание, подающееся на датчик, должно осуществляться от источника тока. Собирается он на двух транзисторах КТ209 и не требует дополнительных настроек. Максимальный ток питания не превышает 5 мА. Увеличение выходного напряжения на 10 мВ соответствует приросту температуры на один градус.

    Использование микроконтроллера

    Применение в схеме самодельного термометра микроконтроллера подразумевает использование программы, управляющей его работой. В качестве микросхемы применяется ATmega8, а датчика температуры — DS18B20.

    В схеме используется небольшое число радиодеталей. Она несложная и не нуждается после сборки в какой-либо наладке. Напряжение питания микроконтроллера составляет пять вольт. Для его стабилизации используется микросхема L7805. Транзисторы можно использовать любые с NPN структурой. В качестве индикатора подойдёт трёхразрядный сегментный дисплей с общим катодом.

    Температура устройством может изменяться в интервале от -55 ° до 125º С с шагом в 0,1º С. Погрешность измерения не превышает 0,5º С. Обмен данными между датчиком и микроконтроллером происходит по шине 1-Wire. При большом расстоянии выноса измерительной микросхемы DS18B20 от ATmega8 необходимо подобрать подтягивающее сопротивление. Распаять его лучше непосредственно на вывод датчика.

    При программировании все установки микроконтроллера оставляются заводскими, и фьюзы не изменяются. Затем к собранному термометру можно добавить ещё один датчик, а также часы. Но для этого необходимо будет обладать знаниями в программировании, чтобы дописать программный код.

    Точный термометр

    Применение в качестве датчиков полупроводниковых диодов и транзисторов характеризуется сложностью калибровки показаний, что в итоге приводит к погрешности результата измерений. Поэтому для получения точного результата в качестве измерителя применяется бифилярно намотанная катушка из тонкого проводника, размещённая в цилиндре, имеющем размеры порядка 4×20 мм.

    Основой конструкции является микросхема ICL707 и светящийся индикатор. Питание можно подавать от любого источника с выходной амплитудой 12 В. На DA3 собран нормирующий преобразователь, изменяющий своё выходное напряжение в зависимости от сигнала, поступаемого с датчика.

    Настройка заключается в выставлении на 36 ноге микросхемы напряжения, равного одному вольту. Делается это с помощью резисторов R3 и R4. Вместо датчика подключают резистор на 100 Ом. Изменением сопротивления R14 устанавливают нули на цифровом индикаторе. После чего устройство готово к измерениям.

    Термометр является необходимым средством, при помощи которого многие измеряют температуру воздуха в доме, воды, а также тела. В продаже имеются различные модели приборов, различающиеся по внешнему виду, способу измерения (ртутные, инфракрасные, электронные), а также по стоимости.

    Но при желании можно изготовить термометр из подручных материалов своими руками. Процесс потребует терпения и выдержки, также понадобится смекалка.

    Жидкостный термометр

    Виды термометров, которые можно сделать своими руками

    Прибор, сделанный своими руками, прослужит более длительный период.

    Но прежде чем приступать к изготовлению, стоит рассмотреть разновидности термометров:

    • жидкостные приборы, в них обычно находится жидкое вещество (спирт, ртуть);
    • устройства, работающие на механическом принципе, в них установлены спирали или ленты из металлических сплавов;
    • электронные термометры — реагируют на изменение температуры металла. При помощи данных приборов могут выполняться измерения в больших температурных диапазонах – от -200 до +850 градусов;
    • инфракрасные и другие оптические устройства, которые позволяют проводить измерения температуры тела и других поверхностей. Измерение при помощи данных приборов обычно выполняется бесконтактным способом;
    • манометры, пирометры, электротермические приборы.

    Модель инфракрасного бесконтактного термометра

    Изготовить самостоятельно можно различные виды термометров – жидкостные, с механическим принципом работы, имеющие металлические спирали или ленты, электронные или цифровые.

    Самым простым вариантом будет изделие из картона, сделать его достаточно просто.

    Электронные и цифровые устройства требуют опыта, знаний электроники. Для их изготовления могут применяться различные схемы, которые требуется правильно подсоединить. Такие устройства часто используются для морозильных камер.

    Как сделать термометр

    Прибор можно изготовить из подручных материалов, которые имеются дома.

    Из пластиковой бутылки

    Самодельный термометр из пластиковой бутылки делает просто, главное, подготовиться к процессу. Для начала необходимы материалы:

    • пластиковая бутылка высотой 20-25 сантиметров;
    • водопроводная вода;
    • медицинский спирт;
    • пищевой краситель;
    • измерительная емкость;
    • пипетка;
    • тонкая трубочка из стекла или пластика;
    • масло растительное;
    • пластилин или формовочная глина;
    • линейка;
    • маркер с тонким стержнем;
    • белая бумага с плотной структурой;
    • скотч;
    • холодная и горячая вода;
    • обычный термометр, который потребуется для калибровки.

    Самодельный термометр

    Схема изготовления самодельного прибора выглядит так:

    1. В емкость (пластиковую бутылку) следует налить воду и медицинский спирт в пропорциях 1:1.
    2. Затем в раствор нужно добавить несколько капель пищевого красителя. Добавлять его следует при помощи пипетки.
    3. Краситель требуется для легкого определения изменений температуры.
    4. Важно, чтобы раствор заполнял бутылку до самых краев.
    5. После этого в бутылку вставляется трубочка из пластика или стекла. Вставлять ее нужно осторожно, чтобы вода не выливалась.
    6. Поднимите верхнюю часть трубочки над горлышком, чтобы она выступала примерно на 10 сантиметров, другой конец не должен доставать до дна бутылки.
    7. Устанавливаем трубочку правильно и фиксируем при помощи формовочной глины или пластилина.
    8. Закупорка должна быть плотной, чтобы из емкости не могла вытечь жидкость.
    9. С боковой стороны к трубочке следует прикрепить полоску из белой плотной бумаги. Ее нужно разместить с тыльной стороны трубочки и прикрепить при помощи скотча.
    10. Бумага требуется для облегчения контроля уровня жидкости в трубочке. Также в дальнейшем на нее можно будет нанести метки.
    11. Измерительный раствор также нужно долить в трубочку, доливать его следует при помощи пипетки.
    12. Важно добиться того, чтобы жидкость в трубке поднималась на высоту пяти сантиметров над горлышком бутылки.
    13. Далее нужно в трубку добавить каплю растительного масла. Выполнять это нужно осторожно, лучше использовать пипетку.
    14. Растительное масло предотвратит испарение измерительной жидкости и повысит срок службы самодельного термометра.

    Испытание

    После полной сборки термометра, его необходимо проверить. Для этого его поочередно нужно опустить в миски с холодной и горячей водой. При помещении в холодную воду уровень жидкости в трубке должен снизиться, в горячую – повыситься. Если так и происходит, это значит, что прибор собран правильно.

    Откалибровать изделие можно при помощи обычного термометра. Для этого его следует поднести к бумаге, слегка прислонить и при помощи маркера нанести метки. Калибровка поможет использовать самодельное устройство для измерения температуры воздуха или жидкости.

    Сложный вариант – электронный термометр

    Схема устройства

    Расшифровка показателей схемы

    Если вы увлекаетесь техникой, то можно сделать электронный термометр. Но для него потребуется приобрести специальные детали. Для самостоятельного изготовления подойдет простой прибор, имеющий следующие показатели:

    • диапазон температур от 0 до 99 градусов Цельсия;
    • уровень входного питания 4,5-5В DC;
    • показатель тока потребления — 20 мА.

    Плата электронного термометра (схема подключения соединений).

    Чтобы сделать электронный прибор для измерения температуры, потребуется приобрести специальную плату. Если вы хотите чтобы показания были четкими и их можно было увидеть издалека, то лучше используйте большие и яркие светодиодные индикаторы. Правильное подключение и подсоединение внешних элементов к плате изображено на рисунке.

    Плата с внешними элементами

    Если термометр будет использоваться для измерения температуры на улице, его нужно вмонтировать в специальную коробочку с сетевым адаптером внутри квартиры. Сам датчик температуры подключается при помощи гибкого шлейфа.

    Плата с гибким шлейфом

    Электрический термометр  своими руками

    Каждому приходилось во время болезни измерять себе температуру ртутным термометром. Эта процедура занимает обычно 5…7 минут. Если взрослые держат градусник спокойно, то за детьми приходится наблюдать, чтобы они его случайно не сломали.
    Предлагаемое устройство позволяет за 3 секунды измерить темпера туру тела или предмета (например микросхемы) в диапазоне от 20 до 45°С с точностью не хуже 0,1°С. Этот диапазон при желании легко можно расширить или сдвинуть при изготовлении.

    По сравнению с ртутным термометром электрический более удобен и безопасен, особенно когда приходится измерять температуру у маленьких детей или у животных.
    В основу по строения схемы взят мостовой преобразователь. Изменение величины сопротивления термодатчика R8 приводит к разбалансу моста и появлению на стрелочном индикаторе РА1 тока, пропорционального температуре.

    Особенностью данного прибора является применение в качестве датчика температуры терморезистора типа СТЗ-19 10 кОм, который обладает очень малой массой, за счет чего и удается получить высокую скорость измерения. Этот датчик удобно закрепить на конце пластмассовой трубки от шариковой авторучки и перевитыми между собой проводами длиной 1…0.6 м через разъем Х1 подключить к измерительному блоку. На разъеме от датчика между контактами 1 и 2 установлена перемычка, которая не позволит включить схему устройства, если не подключен термодатчик, что предохраняет измерительный прибор РА1 от повреждения. Питается схема от двух любых аккумуляторов или батареек с общим напряжением 2…3 В и потребляет от источника ток не более 5 мА.

    Транзисторы VT1 и VT2 используются как низковольтные стабилитроны и могут быть заменены на КТ3102А, Б, В, Г.

    Переменные резисторы, для удобства настройки, лучше применить многооборотные, типа СП5-2 или аналогичные.

    Габариты устройства определяются размерами стрелочного индикатора РА1, и при использовании микроамперметра М4205 на ток 0…50 мкА они не превышают 85х65х60 мм


    Топология печатной платы и размещение на ней элементов показаны на рисунке

    Настройку прибора начинают с измерения сопротивления резистора R8 (желательно с высокой точностью) при фиксированной температуре 20°С. Для этих целей удобно воспользоваться промышленной термокамерой с автоматическим поддержанием заданной температуры, куда и помещают термодатчик. Возможны и другие способы получения температуры 20°С но надо учитывать, что от точности измерения сопротивления термодатчика при этой температуре зависит точность измерения прибора.

    После измерения R8 из двух резисторов R6+R7 подбираем такой же номинал сопротивления и припаиваем их в схему.

    После этого, установив движки резисторов R2 и R3 в среднее положение, включаем схему тумблером S1 и выполняем последовательно следующие операции:

    а) установить переключатель 82 в положение КАЛИБРОВКА и резистором R2 вывести стрелку измерительного прибора в нулевое положение на шкале;

    б) поместить датчик температуры в место с известной, постоянной температурой (в пределах желаемого измерительного диапазона);

    в) установить переключатель S2 в положение ИЗМЕРЕНИЕ и резистором R3 установить стрелку прибора на значение шкалы, которое будет соответствовать измеренной величине;

    Операции а), б) и в) необходимо повторить последовательно несколько раз, после чего настройку можно считать законченной.

    В заключение хотелось бы отметить, что в настроенном приборе диа пазон измерения можно сдвинуть резистором R2 при переключении в режим КАЛИБРОВКА и устанавливая стрелку (ее положение будет соответствовать значению 20°С) на любое значение шкалы. После этого при переключении прибора в режим ИЗМЕРЕНИЕ шкала будет соответствующим образом сдвинута относительно положения стрелки в режиме КАЛИБРОВКА.

    Прибор имеет большой запас по чувствительности, которая увеличивается с уменьшением сопротивления R3 (при первоначальной настройке). Можно сделать так, чтобы прибор улавливал температуру дыхания или же изменение температуры при циркуляции воздуха.

    Схема термометра с цифровой индикацией

    Цифровые термометры довольно широко представлены в магазинах. Это, как правило, автономные приборы с питанием от гальванических элементов и жидкокристаллическим индикатором. Датчиком температуры в таких устройствах чаще всего являются терморезисторы или специальные полупроводниковые датчики, выдающие двоичный код температуры по запросу управляющего микроконтроллера. Насколько точно такие термометры измеряют температуру во всём рабочем диапазоне определяется серьёзностью фирмы изготовителя, которая не всегда на высоте, что может иметь фатальные последствия, если, например, термометр используется для контроля температуры в инкубаторе. Повторить такую конструкцию затруднительно из-за отсутствия специфических элементов.
    В радиотехнических журналах и интернете неоднократно публиковались схемы электронных термометров, в которых в качестве датчика температуры использовались полупроводниковые диоды или транзисторы. Если p-n переход запитать стабильным постоянным током, то падение напряжения на нём в достаточно широком диапазоне почти линейно зависит от температуры. Проблема в том, что для каждого экземпляра диода или транзистора эта зависимость своя, что затрудняет калибровку прибора, т.к. требуется реально помещать датчики в жидкости с точно известной температурой. При использовании обычных терморезисторов температурная зависимость становится ещё более непредсказуемой и погрешность показаний достигает неприемлемых значений. Выходом из этой неприятной ситуации является использование термометров сопротивления — широко распространённых средств автоматики.
    Термометры сопротивления представляют собой бифилярно намотанную катушку из тонкого медного или платинового провода, размещённую в небольшом цилиндрическом корпусе (около Ф 4 х 20 мм), называемую чувствительным элементом. Для защиты от внешних повреждений и удобства подключения чувствительные элементы очень часто помещают в специальный корпус с боксом для подключения внешних проводников. Главное достоинство этих приборов — линейная нормированная (табличная) зависимость сопротивления от температуры, что позволяет легко производить замену датчиков и производить настройку цифровых термометров, используя только набор прецизионных резисторов, с сопротивлением, равным табличному значению сопротивления при выбранной температуре.
    Погрешность измерения в диапазоне температур от -200 град.С до +200 град.С не превышает 0,5 град.С , и , главное, показания достоверны. Термометры сопротивления выпускают с разными температурными характеристиками, называемыми градуировкой. Наиболее распространены медные термометры сопротивления градуировок 50М и 100М, которые указывают на сопротивление чувствительного элемента при 0 град.С. Зависимость сопротивления датчиков от температуры можно узнать с помощью специальной программы. Выше приведённая схема как раз использует в качестве датчика медный термометр сопротивления градуировки 100М. В схеме можно применить абсолютно любые датчики с любой градуировкой, но необходимо будет подобрать номиналы элементов измерительного моста.
    Термометр имеет светящиеся индикаторы и питается от любого сетевого адаптера или аккумулятора с выходным напряжением 12 В. На операционном усилителе DA2 и транзисторе VT1 собран узел получения искусственной средней точки, необходимой для работы аналого — цифрового преобразователя DA1, а на ОУ DA3 собран нормирующий преобразователь, выдающий напряжение -2,000 … +2,000 В при изменении температуры датчика от -200 град.С до +200 град.С.

    После изготовления устройства приступают к его настройке. Вначале подбором резисторов R3, R4 добиваются уровня напряжения на выводе 36 микросхемы DA1 равным 1,000В, контролируя его цифровым мультиметром. Вместо одного из резисторов можно использовать прецизионный проволочный резистор. Далее приступают к настройке нормирующего преобразователя. Вместо датчика температуры подключают прецизионный резистор сопротивлением 100,0 Ом и вращением подстроечного резистора R14 добиваются нулевых показаний цифрового индикатора. Чтобы регулировка удалась, все резисторы нормирующего преобразователя должны быть прецизионными или тщательно подобранными с помощью цифрового мультиметра — отклонение сопротивлений парных резисторов (с одинаковым на схеме сопротивлением) не должно превышать 1%.
    Если настройка нуля прошла успешно, вместо датчика подключают прецизионный резистор с сопротивлением, равным одному из значений сопротивления датчика при выбранной температуре. Подбором резистора R7 и подстроечного R6 добиваются показания этой температуры на цифровом индикаторе прибора. Если датчик температуры будет соединяться с цифровым термометром с помощью кабеля длиной несколько метров, настройку нуля и диапазона необходимо проводить при подключенном кабеле.

    Прецизионные резисторы подключаются на конце кабеля, в месте установки термометра сопротивления. При изменении длины кабеля настройку прибора повторяют — достаточно иметь два прецизионных резистора: 100,0 Ом и любой 110 .. 130 Ом, значение которого точно вымеряют и по градуировочной таблице определяют, какой температуре соответствует это сопротивление, чтобы по этому значению настроить показания. После настройки индикации выбранного значения температуры проверяют уход «0», при необходимости его опять подстраивают резистором R14, и снова проверяют соответствие показаний индикатора выбранному значению и т.д.