Датчик инфракрасного излучения

Пирлоэлектрический датчик движения — общая информация

ПИР датчики движения по сути состоят из пироэлектрического чувствительного элемента (цилиндрическая деталь с прямоугольным кристаллом в центре), который улавливает уровень инфракрасного излучения. Все вокруг излучает небольшой уровень радиации. Чем больше температура, тем выше уровень излучения. Датчик фактически разделен на две части. Это обусловлено тем, что нам важен не уровень излучения, а непосредственно наличие движение в пределах его зоны чувствительности. Две части датчика установлены таким образом, что если одна половина улавливает больший уровень излучения, чем другая, выходной сигнал будет генерировать значение high или low.

Сам модуль, на котором установлен датчик движения, состоит также из дополнительной электрической обвязки: предохранители, резисторы и конденсаторы. В большинстве недорогих пир-датчиков используются недорогие чипы BISS0001 («Micro Power PIR Motion Detector IC»). Этот чип воспринимает внешний источник излучения и проводит минимальную обработку сигнала для его преобразования из аналогового в цифровой вид.

Одна из базовых моделей пироэлектрических датчиков подобного класса выглядит так:

Более новые модели PIR-датчиков имеют дополнительные выходы для дополнительной настройки и установленные коннекторы для сигнала, питания и земли:

ПИР датчики отлично подходят для проектов, в которых необходимо определять наличие или отсутствие человека в пределах определенного рабочего пространства. Помимо перечисленных выше достоинство подобных датчиков, они имеют большую зону чувствительности. Однако учтите, что пироэлектрические датчики не предоставят вам информации о том, сколько человек вокруг и насколько близко они находятся к датчику. Кроме того, сработать они могут и на домашних питомцев.

Общая техническая информация

Эти технические характеристики относятся к PIR датчикам, которые продаются в магазине Adafruit. Принцип работы аналогичных датчиков похожий, хотя технические характеристики могут отличаться. Так что прежде чем работать с ПИР-датчиком, ознакомьтесь с его даташитом.

  • Форма: Прямоугольник;
  • Цена: около 10.00 долларов в магазине Adafruit;
  • Выходной сигнал: цифровой импульс high (3 В) при наличии движения и цифровой сигнал low, когда движения нет. Длина импульса зависит от резисторов и конденсаторов на самом модуле и разная в различных датчиках;
  • Диапазон чувствительности: до 6 метров. Угол обзора 110° x 70°;
  • Питание: 3В — 9В, но наилучший вариант — 5 вольт;
  • BIS0001 (даташит);
  • RE200B (даташит);
  • NL11NH (даташит);
  • Parallax (даташит).

Ссылки для заказа оборудования, которое используется в статье в дальнейшем из Китая

>Для заказа с Aliexpress:

  • КУПИТЬ цифровой датчик движения HC-SR501;
  • КУПИТЬ Arduino Uno R3;
  • КУПИТЬ Breadboard;

Принцип работы пироэлектрических (PIR) датчиков движения

PIR датчики не такие простые как может показаться на первый взгляд. Основная причина — большое количество переменных, которые влияют на его входной и выходной сигналы. Чтобы объяснить основы работы ПИР датчиков, мы используем рисунок, приведенный ниже.

Пироэлектрический датчик движения состоит из двух основных частей. Каждая из частей включает в себя специальный материал, чувствительный к инфракрасному излучению. В данном случае линзы особо не влияют на работу датчика, так что мы видим два участка чувствительности всего модуля. Когда датчик находится в состоянии покоя, оба сенсора определяют одинаковое количество излучения. Например, это может быть излучение помещения или окружающей среды на улице. Когда теплокровный объект (человек или животное), проходит мимо, он пересекает зону чувствительности первого сенсора, в результате чего на модуле ПИР датчика генерируются два различных значения излучения. Когда человек покидает зону чувствительности первого сенсора, значения выравниваются. Именно изменения в показаниях двух датчиков регистрируются и генерируют импульсы HIGH или LOW на выходе.

Конструкция PIR датчика

Чувствительные элементы ПИР датчика устанавливается в металлический герметический корпус, который защищает от внешних шумов, перепадов температур и влажности. Прямоугольник в центре сделан из материала, который пропускает инфракрасное излучение (обычно это материал на основе силикона). За этой пластиной устанавливаются два чувствительных элемента.

Рисунок из даташита Murata:

Рисунок из даташита RE200B:

На рисунке из даташита RE200B видно два чувствительных элемента:

На рисунке выше приведена внутренняя схема подключения.

Линзы

Инфракрасные датчики движения практически одинаковые по своей структуре. Основные отличия — чувствительность, которая зависит от качестве чувствительных элементов. При этом значительную роль играет оптика.

На рисунке выше приведен пример линзы из пластика. Это значит, что диапазон чувствительности датчика представляет из себя два прямоугольника. Но, как правило, нам нужно обеспечить большие углы обзора. Для этого можно использовать линзы, подобные тем, которые используются в фотоаппаратах. При этом линза для датчика движения должна быть маленькая, тонкая и изготавливаться из пластика, хотя он и добавляет шумы в измерения. Поэтому в большинстве PIR датчиков используются линзы Френеля (рисунок из Sensors Magazine):

Линзы Френеля концентрируют излучение, значительно расширяя диапазон чувствительности пиродатчиков (рисунок с BHlens.com)

Рисунок из Cypress appnote 2105:

Теперь у нас есть значительно больший диапазон чувствительности. При этом мы помним, что у нас два чувствительных элемента и нам нужны не столько два больших прямоугольника, сколько большое количество маленьких зон чувствительности. Для этого линза разделяется на несколько секций, каждая из которых представляет из себя отдельную линзу Френеля.

На рисунке ниже можно увидеть отдельные секции — линзы Френеля:

На этом макроснимке обратите внимание, что фактура отдельных линз отличается:

В результате формируется целый набор чувствительных участков, которые взаимодействуют между собой.

Рисунки из даташита NL11NH:

Ниже еще один рисунко. Более яркий, но менее информативный. Кроме того, обратите внимание, что у большинства датчиков угол обзора составляет 110 градусов, а не 90.

Рисунок из IR-TEC:

Подключение PIR датчика движения

Большинство модулей с инфракрасными датчиками движения имеют три коннектора на задней части. Распиновка может отличаться, так что прежде чем подключать, проверьте ее! Обычно рядом с коннекторами сделаны соответсвующие надписи. Один коннектор идет к земле, второй выдает интересующий нас сигнал с сенсоров, третий — земля. Напряжение питания обычно составляет 3-5 вольт, постоянный ток. Однако иногда встречаются датчики с напряжением питания 12 вольт. В некоторых больших датчиках отдельного пина сигнала нет. Вместо этого используется реле с землей, питанием и двумя переключателями.

Для прототипа вашего устройства с использованием инфракрасного датчика движения, удобно использовать монтажную плату, так как большинство данных модулей имеют три коннектора, расстояние между которыми рассчитано именно под отверстия макетки.

В нашем случае красный кабель соответсвует питанию, черный — земле, а желтый — сигналу. Если вы подключите кабели неправильно, датчик не выйдет из строя, но работать не будет.

Тестирование PIR датчика движения

Соберите схему в соответсвии с рисунком выше. В результате, когда PIR датчик обнаружит движение, на выходе сгенерируется сигнал HIGH, который соответсвует 3.3 В и светодиод загорится.

При этом учтите, что пироэлектрический датчик должен ‘стабилизироваться’. Установите батарейки и подождите 30-60 секунд. На протяжении этого времени светодиод может мигать. Подождите, пока мигание закончится и можно начинать махать руками и ходить вокруг датчика, наблюдая за тем, как светодиод зажигается!

Настройка перезапуска датчика

У пироэлектрического датчика движения есть несколько настоек. Первой мы рассмотрим ‘перезапуск’.

После подключения, посмотрите на заднюю поверхность модуля. Коннекторы должны быть установлены в левом верхнем углу L, как это показано на рисунке ниже.

Обратите внимание, что при таком варианте подключения, светодиод не горит постоянно, а включается-выключается, когда вы двигаетесь возле него. Это опция ‘без перезапуска’ (non-retriggering).

Теперь установите коннектор в позицию H. После тестирования окажется, что светодиод горит постоянно, если кто-то движется в пределах зоны чувствительности датчика. Это режим ‘перезапуск’.

Рисунок ниже из даташита датчика BISS0001:

Для большинства случаев режим ‘перезапуск’ (коннектор в позиции H кк это показано на рисунке ниже) лучше.

Настраиваем чувствительность

На многих инфракрасных датчиках движения, в том числе и у компании Adafruit, установлен небольшой потенциометр для настройки чувствительности. Вращение потентенциометра по часовой стрелке добавляет чувствительность датчику.

Изменение времени импульса и времени между импульсами

Когда мы рассматривает PIR датчики, важны два промежутка времени ‘задержки’. Первый отрезок времени — Tx: как долго горит светодиод после обнаружения движения. На многих пироэлектрических модулях это время регулируется встроенным потенциометром. Второй отрезок времени — Ti: как долго светодиод гарантированно не загорится, когда движения не было. Изменять этот параметр не так просто, для этого может понадобится паяльник.

Давайте взглянем на даташит BISS:

На датчиках от Adafruit есть потенциометр, отмеченный как TIME. Это переменный резистор с сопротивлением 1 мегаом, который добавлен к резисторам на 10 килоом. Конденсатор C6 имеет емкость 0.01 микрофарат, так что:

Tx = 24576 x (10 кОм + Rtime) x 0.01 мкФ

Когда потенциометр Rtime в ‘нулевом’ — полностью повернут против часовой стрелки — положении (0 мегаом):

Tx = 24576 x (10 кОм) x 0.01 мкФ = 2.5 секунды (примерно)Когда потенциометр Rtime полностью повернут по часовой стрелке (1мегаом):

Tx = 24576 x (1010 кОм) x 0.01 мкФ = 250 секунд (примерно)

В средней позиции RTime время будет составлять около 120 секунд (две минуты). То есть, если вы хотите отслеживать движение объекта с частотой раз в минуту, поверните потенциометр на 1/4 поворота.

Для более старых/других моделей PIR датчиков

Если на вашем датчике нет потенциометров, можно провести настройку с помощью резисторов.

Нас интересуют резисторы R10 и R9. К сожалению, китайцы умею многое. В том числе и путать надписи. На рисунке выше приведен пример, на котором видно, что перепутаны R9 с R17. Отследить подключение по даташиту. R10 подключен к 3 пину, R9 — к 7 пину.

Например:

Tx is = 24576 * R10 * C6 = ~1.2 секунд

R10 = 4.7K и C6 = 10 нанофарад

и

Ti = 24 * R9 * C7 = ~1.2 секунд

R9 = 470K и C7 = 0.1 микрофарад

Вы можете изменить время задержки установив различные резисторы и конденсаторы.

Подключение PIR датчика движения к Arduino

Напишем программу для считывания значений с пироэлектрического датчика движения. Подключить PIR датчик к микроконтроллеру просто. Датчик выдает цифровой сигнал, так что все, что вам необходимо — считывать с пина Arduino сигнал HIGH (рбнаружено движение) или LOW (движения нет).

При этом не забудьте установить коннектор в позицию H!

Подайте питание 5 вольт на датчик. Землю соежинети с землей. После этого соедините пин сигнала с датчика с цифровым пином на Arduino. В данном примере использован пин 2.

Программа простая. По сути она отслеживает состояние пина 2. А именно: какой на нем сигнал: LOW или HIGH. Кроме того, віводится сообщение, когда состояние пина меняется: есть движение или движения нет.

/*

* проверка PIR датчика движения

*/

int ledPin = 13; // инициализируем пин для светодиода

int inputPin = 2; // инициализируем пин для получения сигнала от пироэлектрического датчика движения

int pirState = LOW; // начинаем работу программы, предполагая, что движения нет

int val = 0; // переменная для чтения состояния пина

void setup() {

pinMode(ledPin, OUTPUT); // объявляем светодиод в качестве OUTPUT

pinMode(inputPin, INPUT); // объявляем датчик в качестве INPUT

Serial.begin(9600);

}

void loop(){

val = digitalRead(inputPin); // считываем значение с датчика

if (val == HIGH) { // проверяем, соответствует ли считанное значение HIGH

digitalWrite(ledPin, HIGH); // включаем светодиод

if (pirState == LOW) {

// мы только что включили

Serial.println(«Motion detected!»);

// мы выводим на серийный монитор изменение, а не состояние

Устройство прибора

Простейший ИК-датчик состоит из двух небольших линз Френеля — сложных составных конструкций из множества призматических фасеток, образующих выпуклую чашу. Они собирают информацию о тепловых волнах с конкретного участка и передают её подсоединённым к ним чувствительным сенсорам. Обычно полученные обеими линзами данные примерно одинаковы — это значит, что движения нет. Если же между ними появляется существенная разница, то в «поле зрения» детектора появился человек или другой объект, излучающий большое количество тепла.

На деле устройство с двумя линзами будет непрактичным из-за слишком низкой чувствительности. В современных моделях датчиков их установлено по несколько десятков — от 20 до 60.

Точные схемы детекторов движения отличаются у разных производителей, но их примерное устройство похоже. Прибор состоит из следующих элементов:

  • Оптическая система. Включает в себя множество линз, которые в зависимости от модели устройства могут быть разных форм и размеров, необходимых для покрытия нужного участка пространства. Отделена от прочих элементов системы герметической камерой, чтобы избежать воздействия вырабатываемого ими тепла. Может контролировать одну или несколько плоскостей пространства, а также делать это вкруговую или по лучу.
  • Сенсор. Чаще всего им является пироэлектрический элемент, но иногда встречаются модели с термопарами, микроболометрами и полупроводниками. Регистрирует показания, полученные от оптической системы, и при возникновении в них неоднородности подаёт сигнал необходимому прибору.
  • Блок обработки сигнала. Анализирует длину, амплитуду и форму помех в инфракрасном излучения, чтобы предотвратить ложные срабатывания. Их могут вызвать такие факторы, как солнечный свет, вибрация, электромагнитные волны, движения животных, тепло бытовых приборов или электроники и даже перемещение потоков воздуха. Более простые блоки обработки всего лишь «отсеивают» слишком слабые сигналы, в то время как сложные версии устройств анализируют длительность и частоту неоднородностей и на их основании определяют, помехи это или нет.

Стоит отметить, что всё, в чём заключается принцип действия датчика движения — это получение информации о наличии в его зоне действия человека. Поэтому он почти никогда не используется без подключения к другим устройствам, которые эту информацию используют. Ими могут быть такие приборы:

  • сигнализация, включающая тревогу;
  • охранные системы, отправляющие уведомление владельцу датчика и службе безопасности;
  • лампы, подсветка бассейна и прочие осветительные приборы, которые включаются или выключаются в зависимости от наличия в их зоне действия людей;
  • климатическая техника, изменяющая свои параметры по такому же принципу.

Чаще всего продаются ИК датчики тоже не самостоятельно, а в комплекте с охранными системами или другой техникой.

Но бывают и исключения — тогда подключать и настраивать устройства придётся самостоятельно. Пользователю для этого будет предоставлен доступ к личному кабинету на сайте и в мобильном приложении, откуда он сможет задать параметры взаимодействия приборов.

Плюсы и минусы

Детекторы движения, которые реагируют на инфракрасное излучение, конкурируют с ультразвуковыми, микроволновыми и комбинированными датчиками. У каждого из них имеются свои плюсы и минусы, позволяющие каждому типу оставаться на рынке. Среди преимуществ ИК датчиков можно выделить такие их особенности:

  • Абсолютная безопасность для здоровья. Устройство не генерирует никаких волн, а только принимает их от окружающих объектов и анализирует. Это выгодно выделяет его на фоне приборов, которые подвергают помещение пусть и небольшому, но постоянному воздействию ультразвука (он безопасен для человека, но может вызвать дискомфорт или даже серьёзные проблемы со здоровьем у домашних животных) или СВЧ-излучения.
  • Возможность точной настройки расстояния и угла, под которым должен находиться движущийся объект для подачи сигнала.
  • Возможность работы на улице. Датчик реагирует только на объекты, создающие разницу температур.

Есть у него и существенные недостатки. К ним можно отнести такие свойства:

  • Высокая вероятность ложных срабатываний от безобидных воздействий.
  • Зависимость от окружающей среды. Датчик не может эффективно работать при слишком высокой или низкой температуре — выше +50 °C или ниже -35 °C.
  • Возможность обмануть детектор. Если перед ним двигаться очень медленно, то прибор может посчитать возникшие от этого колебания в инфракрасном излучении помехами. Кроме того, датчик не видит объекты, покрытые не пропускающими ИК-излучения материалами или обладающие отличной теплоизоляцией и сливающиеся с температурным фоном.

При всех этих плюсах и минусах он относится к средней ценовой категории — дешевле, чем СВЧ-детекторы, но дороже ультразвуковых.

Иногда ИК датчик совмещается с ними в комбинированные устройства, чтобы разные типы улавливателей излучения могли покрыть недостатки и слабые места друг друга.

Сферы использования

Среди всех этих видов датчиков именно инфракрасные наиболее распространены — и судя по аналитике, их рынок будет только расти. Устройства довольно часто встречаются в повседневной жизни и используются в следующих сферах деятельности:

  • производство электроники, в том числе сенсорных телефонов и планшетов, игровых консолей и умных часов;
  • установка систем автоматического открывания дверей в домах и общественных зданиях;
  • автомобилестроение — датчики входят в конструкции подушек безопасности, систем для облегчения маневрирования при парковке и автомобилей с системами автоматического управления;
  • здравоохранение;
  • оборонное производство;
  • строительство самолётов.

Но наибольшая их доля приходится на системы безопасности различного рода и контроль за системами умного дома.

Охрана помещений

Установка ИК детектора движения — очень распространённый способ узнать о проникновении нарушителей в жилой дом или на любую другую территорию. Для этого его подключают к охранным системам, которые помогут предотвратить дальнейший ущерб и оповестить о нарушении границ собственности не только её владельца, но и правоохранительные органы, охрану и службы безопасности.

В зависимости от настроек охранная система может послать владельцу СМС, электронное письмо, уведомление или даже позвонить при получении сигнала от прибора. Кроме того, ею могут быть активированы дополнительные защитные механизмы: включение сигнализации или оповещателя, закрытие автодверей и блокировка замков, выключение света или полное обесточивание помещения.

Эффективность такой охраны во многом зависит от правильности размещения инфракрасного сенсора на охраняемом периметре. Помимо покрытия всей территории, он должен располагаться на определённой высоте и под правильным углом, чтобы минимизировать шансы злоумышленника слиться с тепловым фоном. При установке также учитывается наличие козырьков, оконных и дверных рам, украшений — всё это может оказать воздействие на сенсор при его неправильном монтаже.

Кроме того, для охранных датчиков очень важно наличие антисаботажной системы, которая активирует сигнал и оповещает владельца, если кто-то попытался сломать устройство или оказать воздействие на его радиус обзора.

Системы «умного дома»

Помимо использования в охранной сфере, инфракрасные датчики движения широко применяются для автоматизации освещения и регуляции температуры в жилых домах, офисах и прочих помещениях, где часто бывают люди. Они получают информацию об изменении внешней среды — например, о появлении в зоне действия датчика излучения, вызванного теплом человеческого тела — и передают её другим устройствам, которыми могут быть лампы, кондиционеры, системы для открытия дверей и прочие полезные в быту устройства. Они реагируют на сигнал и изменяют свои параметры соответствующим образом.

По подсчётам зарубежной компании исследования рынка Markets and Markets, которые были проведены в 2015 году, автоматизация техники с помощью датчиков снижает траты на освещение на 60—70%, а общий расход электроэнергии — на 40%.

В зависимости от типа отслеживающего устройства, его возможности фиксировать длительное присутствие и реагировать на движения, оно может как просто контролировать включение-выключение света, так и регулировать его яркость, цвет, мощность и прочие параметры. Инфракрасный датчик движения в таких системах часто совмещают с другими типами отслеживающих устройств, например, с детектором света. Такая комбинация позволяет поддерживать в определённом помещении один и тот же уровень освещённости в любое время суток, когда там кто-то находится.

Регуляция температуры работает похожим образом. ИК датчик улавливает присутствие или отсутствие людей в помещении и передаёт технике соответствующие сигналы: включиться, выключиться или изменить настройки. Например, он может дать обогревателю или тёплому полу команду повысить мощность или включить кондиционер, если кто-то вошёл в слишком холодное или тёплое помещение.

В комплексах для автоматической регуляции климата, помимо детекторов ИК излучения, почти всегда присутствуют датчики температуры и другие механизмы, дополняющие друг друга для достижения лучших результатов.

Критерии выбора

Чтобы правильно выбрать инфракрасный датчик движения, необходимо сначала определить цель, для которой он будет использоваться. Для дома можно выбрать прибор с меньшим диапазоном рабочих температур, но с большим углом обзора. Для улицы устройство должно обладать определённым классом защиты — 55 или 65 — и быть защищённым от воздействия ветра, дождя и прочих факторов окружающей среды. Кроме того, стоит обратить внимание на следующие параметры:

  • угол и дальность обнаружения неоднородностей в тепловом фоне;
  • точность и удобство настройки параметров включения и выключения, например, промежуток времени срабатывания и порог чувствительности;
  • потребление электричества, наличие энергосберегающей функции;
  • сфера деятельности, под которую приспособлен датчик;
  • эффективность как охранного устройства.

Немаловажную роль в выборе датчика движения играет и его финансовая доступность для покупателя. Однако стоит отметить, что в случае с этим прибором самый дорогой вариант всегда является лучшим: например, оснащённый зеркальной оптикой детектор с огромным радиусом действия будет не нужен при установке умного освещения в небольшой ванной, а сверхчувствительный датчик будет лишним на улице, где животные и машины будут провоцировать ложные срабатывания.