Что такое огонь для детей объяснение

Что есть огонь на самом деле?

Итак, огонь — это не твёрдое вещество, не жидкость, не газ и не плазма. Что нам вообще остаётся? Наверное, вовсе не считать огонь материей. Это наше чувственное восприятие химической реакции, которая называется горением. В каком-то смысле огонь похож на листья, меняющие цвет по осени, на запах созревающих фруктов, на мерцающий огонёк светлячка. Всё это сенсорные ощущения, говорящие нам о том, что происходит какая-то химическая реакция. Огонь отличается только тем, что задействует одновременно множество наших чувств, создавая такую гамму ощущений, которую мы ожидаем увидеть только от чего-то живого и материального.

Определение «что такое огонь» Википедия дает такое:

В физике (да и в химии тоже) горение (огонь) создаёт эту иллюзию с помощью топлива, тепла и кислорода. Когда дерево внутри костра разогревается то температуры возгорания, стенки составляющих его клеток распадаются, выпуская в воздух сахара и другие молекулы. Они, в свою очередь, вступают в реакцию с находящимся в воздухе кислородом, создавая воду и углекислый газ. В то же время, та вода, что находится в дереве, испаряясь, расширяется — она разрывает органику вокруг себя, создавая тот характерный треск в костре, камине или печи, который мы так любим.

Когда огонь набирает жар, водяные пары и углекислый газ, генерирующиеся в процессе горения, рассеиваются. Теряя плотность, они столбом поднимаются вверх. И расширение, и рассеивание, и воспарение газов — всё это вызывается силой тяжести, которая, вдобавок ко всему, придаёт огню характерную коническую форму. Без гравитации молекулы не разделяются по плотности, и огонь имеет совершенно другую форму.

Огонь

У этого термина существуют и другие значения, см. Огонь (значения). Огонь

Ого́нь — интенсивный процесс окисления, сопровождающийся излучением в видимом диапазоне и выделением тепловой энергии. В научном смысле — совокупность раскалённых газов (низкотемпературная плазма), выделяющихся в результате:

  • произвольного/непроизвольного нагревания горючего материала до определённой точки (здесь и далее под горючими материалами понимаются такие материалы, как древесина, а не вступившие в реакцию компоненты, допустим, сера) при наличии окислителя (кислорода);
  • химической реакции (в частности, взрыва);
  • протекания электрического тока в среде (электрическая дуга, электросварка).

Огонь является основной фазой процесса горения и имеет свойство к самораспространению по затронутым им другим горючим материалам. Хотя среди процессов горения химических веществ бывают и исключения, когда вещество сгорает без пламени. Собственная температура огня зависит от вещества, выступающего в качестве топлива и давления окислителя. Собственный цвет зависит от горящего вещества и его чистоты (например, огонь от костра или свечи, в котором присутствует значительная доля углекислого газа, горит оранжевым цветом, относительно чистый от углерода — красным, самый чистый — голубым).

Для возникновения и существования огня требуются три компонента: топливо, которое горит, окислитель, который позволяет протекать этому процессу, и температура. В качестве топлива могут выступать многие вещества (см. ниже). В роли окислителя чаще всего выступает кислород, но могут выступать и другие элементы, — например, хлор или фтор. Любопытно, что вода горит в атмосфере фтора бледно-фиолетовым пламенем, при этом вода является топливом, а в результате горения выделяется кислород. Иными словами, без доступа окислителя тело не может загореться. Если же телу передать путём нагрева энергию, которая превзойдёт энергию межмолекулярных связей, оно распадётся на горючие составляющие. Например, при нагревании дерева без доступа воздуха происходит его разделение сначала на древесный уголь и смолу, а затем на горючие газы — углеводороды. Третий компонент существования огня — температура, которая определяется свойствами окислителей и топлива. Например, кусочек угля в сжиженном кислороде при сверхнизкой температуре не горит, а интенсивно тлеет, но в атмосфере газообразного кислорода, напротив, сгорает быстро, с яркой вспышкой. Таким образом, при отсутствии любого из трёх факторов возникновение огня невозможно.

Анимация огня

Горючие и негорючие вещества

Все вещества относительно огня подразделяются на четыре категории:

  • Горючие вещества — вещества (материалы), способные к взаимодействию с окислителем (кислородом воздуха) в режиме горения. По горючести вещества (материалы) подразделяют на три группы:
  • негорючие вещества и материалы, неспособные к самостоятельному горению на воздухе;
  • трудногорючие вещества и материалы — способные гореть на воздухе при воздействии дополнительной энергии источника зажигания, но неспособные самостоятельно гореть после его удаления;
  • горючие вещества и материалы — способные самостоятельно гореть после воспламенения или самовоспламенения (самовозгорания).

Горючие вещества (материалы) — понятие условное, так как в режимах, отличных от стандартной методики, негорючие и трудногорючие вещества и материалы нередко становятся горючими.

Среди горючих веществ имеются вещества (материалы) в различных агрегатных состояниях: газы, пары, жидкости, твёрдые вещества (материалы), аэрозоли. Практически все органические химические вещества относятся к горючим веществам. Среди неорганических химических веществ также имеются горючие вещества (водород, аммиак, гидриды, сульфиды, азиды, фосфиды, аммиакаты различных элементов).

Горючие вещества (материалы) характеризуются показателями пожарной опасности. Введением в состав этих веществ (материалов) различных добавок (промоторов, антипиренов, ингибиторов) можно изменять в ту или иную сторону показатели их пожарной опасности.

Литература: ГОСТ 12.1.044-89.ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения; СНиП 21-01-97*. Пожарная безопасность зданий и сооружений.

  • Вещества, которые при нагревании до определённой точки при обычных условиях воспламеняются (дерево, сера);
  • Вещества, воспламеняющиеся лишь при определённых обстоятельствах, например, измельчении (железо, кремень);
  • Вещества, не способные гореть в атмосфере воздуха вообще (вода, платина); (В атмосфере фтора горят даже вода и платина)
  • Вещества, горящие лишь при присутствии другого вещества рядом, выступающего в роли катализатора (кусок сахара будет гореть, если только он посыпан пеплом, например, сигаретным. Пепел является катализатором, точнее, катализатором являются соли лития, содержащиеся в пепле).

История

Основная статья: Освоение огня древними людьми

Согласно Б. Ф. Поршневу, открытие способа добывания огня явилось прямым следствием обработки камней ещё в раннем палеолите. Достоверно известно использование огня синантропом. Первоначально огонь использовался для создания дыма против докучливых летающих насекомых и только потом древние люди освоили кулинарную функцию огня: сначала коптили пищу на дыму, затем стали жарить на открытом огне и печь в золе, уже в эпоху неолита (с изобретением керамических сосудов) освоили варение. Наряду с кулинарной функцией огня была открыта его отопительная и осветительная функция (последняя потребовала изобретения просмоленных факелов). Огонь как очаг способствовал консолидации членов группы первобытных людей (что часто приобретало религиозную окраску) и зарождению у них представления о собственности (фольклорные сюжеты с «похищением огня»). Также в эпоху неолита огонь стал широко использоваться для обжига глины, плавки металлов и очищения места под пашню (подсечно-огневое земледелие). С развитием цивилизации огонь использовался как оружие уничтожения (греческий огонь, калёное ядро, огнемёт, коктейль Молотова) и как средство передачи информации (оптический телеграф).

…Добывание огня трением впервые доставило человеку господство над определенной силой природы и тем окончательно отделило человека от животного царства.

— Ф. Энгельс, «Анти-Дюринг»

Способы добычи

Основная статья: Зажигание огня

В первобытном обществе использовали следующие способы добычи огня:

  1. Трение. Этот способ заключался в трении твёрдого дерева о более мягкое. Огонь можно получить быстрее, если твёрдый кусок тереть в желобке мягкого. Добывание огня трением
  2. Сверление. Твёрдый острый кусок дерева вводился в отверстие в мягком дереве и руками приводился в движение при помощи вращения. Кроме того, в отверстие клали трут гнилого дерева, который быстро воспламенялся. Ещё быстрее, если деревянный стержень приводился в движение при помощи тетивы лука.
  3. Высекание. Ударяя друг о друга два камня, получали искры, которые зажигали ранее подготовленный трут. Использовали в основном серный колчедан, разного рода кварц, кремень из-за их особой твёрдости. Также использовался для высекания искры в кремневых и колесцовых замках. Этот способ применялся вплоть до начала XX-го века по всей Европе, когда, во-первых, получили распространение спички и зажигалки, а, во-вторых, вышли из употребления искровые замки из-за явного превосходства над ними ударно-спускового механизма современного неавтоматического и автоматического оружия (они менее капризны при работе, позволяют держать в оружии много зарядов, меньше изнашиваются при стрельбе и т. п.).
  4. Электричество (молния, постоянный и переменный ток и другое). По некоторым данным, первый огонь был добыт человеком с лесных пожаров, вызванных ударом молнии, или же с выхода на поверхность источников природного газа, рядом с которым ударила молния. По тому же принципу работают современные приборы для получения огня и воспламеняются взрывчатые вещества.

Затем появились спички и зажигалки.

Значение в быту

Из-за важного значения огня различные способы его добывания изобрели ещё первобытные люди, использовавшие его для освещения, согревания, приготовления пищи, защиты от диких животных и подачи условных сигналов. Первым способом, по-видимому, стал метод получения из произвольного источника нагревания, такого как молния (хотя молнии, учитывая различные природные условия и погоду, ударяли в деревья достаточно редко). Повышающая трение, но малоэффективная палочка, вращающаяся в куске дерева, была заменена на трут, который делали из грибных наростов на дубе или ясене. В некоторых районах для разжигания огня стали использовать кремни, которые при ударе друг об друга высекали искру. Затем появилось огниво. Традиционной формой поддержания огня тогда и ныне, при прохождении курса выживания, был костёр.

Первым химическим способом получения огня стал катализ, открытый немецким химиком Дёберейнером. На основании своего открытия он создал не предназначенный для бытового употребления прибор под названием «водородное огниво» или «Огниво Дёберейнера», усовершенствованной разновидностью которого является так называемый аппарат Киппа.

В дальнейшем появились спички и, сначала, бензиновые, а потом — газовые зажигалки.

Огонь в военном деле

В военном деле под «огнём» понимается стрельба из огнестрельного оружия (пулями или другими снарядами). Такой смысл слово обрело по причине того, что первые образцы огнестрельного оружия были фитильными. Отсюда же команда «Пли» при огне из артиллерийских орудий. Кроме того, этот термин не лишён смысла и сейчас — при выстреле из ствола оружия почти неизбежно вырывается струя не сгоревших в канале его пороховых газов. Эта вспышка способна ослепить стрелка (при использовании особенно мощных патронов вроде .50 Action Express или .50 BMG) или выдать его месторасположение (например, при стрельбе снайпера), что способно повлечь за собой серьёзные и опасные для жизни и здоровья последствия. Пламегаситель и глушитель несколько уменьшают вспышку, однако первый практически не употребляется на пистолетах (за исключением сделанных на основе ПП, например, Узи-пистолета, или некоторых автоматических пистолетов вроде Beretta 93R), а второй запрещён для установки на гражданском и спортивном оружии и подходит лишь к оружию, пули которого имеют дозвуковую скорость. Кроме того, из-за прорыва газов в револьвере между стволом и барабаном в револьверах глушитель подходит лишь к револьверам Пипера и Нагана, у которых гильза имеет коническую форму.

Выстрел из пистолета Макарова (обратите внимание на то, что затвор-кожух уже выбросил гильзу)

Стрельба в космосе

Стрельба в космосе, несмотря на отсутствие воздуха, возможна, потому что необходимый для горения кислород содержится в порохе. Однако без кардинальной переделки стрельбу в космосе вряд ли можно будет назвать удобной: из-за отсутствия гравитации и сопротивления воздуха пуля будет лететь в тысячи раз дальше, но при этом необходимо принимать нетривиальные меры по смазке всех движущихся частей оружия, так как в условиях вакуума она будет быстро испаряться и оружие сразу заклинит. Либо исключить все движущиеся части (кроме пули), что также является нетривиальной задачей. Кроме того, на стрелка (или оружие, закрепленное на cпутнике) будет действовать импульс отдачи, который требуется компенсировать.

Огонь в религиозных представлениях

И. И. Соколов «Ночь на Ивана Купалу», 1856 год

Огню уделяется большое внимание в ряде мифологий. В греческой и римской мифологии с огнём отождествлялось несколько божеств (Гефест, Прометей, Веста, Гестия и другие), в древнеиндийской мифологии олицетворением огня был Агни, в кельтской мифологии богиня огня называлась Бригид. В зороастризме огонь выступает как сугубо священная стихия и воплощение божественной справедливости, Арты. У народов Севера огонь представлялся в виде женского образа — «матери», «хозяйки очага» и т. п., а у якутов и бурят — в мужском образе «хозяина». В средневековом мистицизме саламандры были низшими духами огня, обитавшими в нём. У современных православных, придерживающихся старого стиля, на Пасху в Иерусалиме проводится обряд зажигания так называемого «благодатного огня».

Наряду с водой, землёй и воздухом, огонь считается одной из четырёх стихий (первоэлементов) и в связи с этим занимал важную роль особенно в античной философии, например у Гераклита, а также в алхимии. В западной астрологии элемент огня связан с зодиакальными знаками Овна, Льва и Стрельца, его доминанты — Солнце. В китайской астрологии огонь — одна из пяти стихий и связывался с планетой Марс, энергией ци, югом, летом (6 апреля — 17 июня по григорианскому календарю), красным цветом, горьким вкусом и резким, жгучим запахом, числом 7, земными «ветвями» змеи («сы») и лошади («у»), 3-м и 4-м небесными «стволами» («бин», «дин») и в том числе соотносился с годами, оканчивающимися на 6 и 7.

У разных народов можно встретить разнообразные амулеты, связанные своим магическим смыслом с огнём. Кресаловидная привеска, «чёртовы пальцы» и прочие артефакты демонстрируют желание человека приручить Огонь и заручиться его поддержкой

В христианстве

В христианстве огонь ассоциируется как правило с адом и Сатаной, но есть и благодатный огонь, праведный огонь, ассоциируемый с Богом.

Живой огонь

В России «живым» называли огонь, произведённый путём трения двух кусков дерева. В Галиции такой огонь называли «божьим». Древнейший способ добывания огня, получив религиозное значение, до сих пор удержался в народных обрядах. В горных местах Галиции пастухи, выгнав впервые весной скот в поле, разводят живой огонь и молятся при этом, читая «Отче наш» и другие молитвы. В России, местами, живой огонь требовался для домашнего очага на «осенний Новый год» (Семёнов день, 1 (14) сентября), для зажигания купальских костров, для перегона скота во время эпидемий. То же было и в Германии в старое время. У древних римлян, если огонь Весты угасал, жрецы наказывали дев оберегательниц, и для получения нового огня сверлили кусок предвещающего счастье дерева. Как культурный пережиток живой огонь сохранился у современных болгар. Поверья и обряды, связанные с живым огнём, представляются, большей частью, остатками древних культов огня, распространённых среди индоевропейских народов.

Огонь как средство убийства и самоубийства

См. также: Сожжение на костре, Сварение в кипятке, Самосожжение, Сати (ритуал) и Жертвоприношение

Высокая травмоопасность от огня с древнейших времён привлекала людей для совершения убийств. Сожжение в костре в Средние века имело широкое распространение как один из видов смертной казни, в особенности — для тех, кого признавали ведьмами. В Новое время он был отменён и сейчас не употребляется, так как смертную казнь таким способом трудно сделать скрытой, а страдания приговорённого к смерти при этом велики — даже если во время казни шёл дождь, человек мучительно задыхался в дыму. Также существовали и иные способы смертной казни, в которых огонь играл роль, но не главную — например, сварение в кипятке. Кроме того, этот способ употребляется как один из способов самоубийства. Как правило, самосожжение применяется в знак протеста против чего-либо. Чаще всего при этом оно практикуется теми, кто хочет показать, что не боится страдать за то, чему привержен. Процент летального исхода при этом составляет порядка семидесяти процентов — самоубийцу редко удаётся спасти даже в том случае, если его успели сразу же вынуть из пламени, потушить огонь и оказать первую медицинскую помощь. Иногда самосожжение несёт и ритуальный характер — в индуизме широкое распространение имело самосожжение вдов, когда вдову погибшего супруга надлежало сжечь вместе с ним, или же она сама бросалась в костёр. На сегодняшнее время это явление редкое, а его применение запрещено законом и классифицируется как самоубийство. Был и другой тип ритуального убийства с помощью огня — человеческое или животное жертвоприношение. Человеческое расценивается как убийство и сектантство и запрещено во всех странах мира, а животное не практикуется, хотя оба вида используются некоторыми сектами и религиозными течениями до сих пор.

Известные люди, преданные сожжению

  • Сорок Севастийских мучеников (320)
  • Гус, Ян (6 июля 1415)
  • Жанна д’Арк (30 мая 1431)
  • Сервет, Мигель (27 октября 1553)
  • Джордано Бруно (17 февраля 1600)
  • Аввакум Петров (14 (24) апреля 1682)
  • Кульман, Квирин (4 октября 1689)
  • Лазо, Сергей Георгиевич? (май 1920)
  • Савельева, Прасковья Ивановна (12 января 1944)

Известные люди, покончившие жизнь самоубийством при помощи самосожжения или сделавшие попытку

  • Ветрова, Мария Федосьевна (12 февраля 1897)
  • Тхить Куанг Дык (11 июня 1963)
  • Сивец, Рышард (8 сентября 1968)
  • Палах, Ян (19 января 1969)
  • Зайиц, Ян (25 февраля 1969)
  • Каланта, Ромас (14 мая 1972)
  • Гирнык, Алексей Николаевич (21 января 1978)
  • Бадыляк, Валенты (21 марта 1980)
  • Ормандо, Альфредо (13 января 1998)
  • Групповое самосожжение в Пекине (23 января 2001)
  • Буазизи, Мохаммед (17 декабря 2010)

Ссылки

Огонь на Викискладе

  • С. Токарев «Символика огня в истории культуры»

Нельзя определить время и имя первого человека, который добыл огонь, сделал его своим верным помощником, основой хозяйства и надежной защитой от диких зверей. Уже в первобытные времена люди постоянно сталкивались с необузданной страшной силой огня во время извержения вулканов или лесных пожаров. Но со временем человек начал открывать и полезные свойства огня. Так, принеся огонь в пещеру, он смог ее осветить и обогреть, да и пища, приготовленная на огне, приобретала намного лучший вкус. Люди годами поддерживали домашний огонь в своих жилищах. Прошли тысячелетия прежде, чем человек сам научился добывать огонь. Предполагается, что это величайшее открытие произошло случайно после того, как люди научились сверлить древесину. Во время сверления древесина сильно нагревалась и иногда даже воспламенялась. На это обратили внимание и с помощью трения научились добывать огонь.

Для этого брали две сухих деревянных палочки, затем в одной из них делали лунку и ложили на землю, крепко прижимая ее коленом. Вторую палочку вставляли в лунку и начинали быстро вращать ее между ладонями, при этом нужно было еще с силой давить на нее. При этом ладони часто сползали вниз, приходилось останавливаться, поднимать их вверх и продолжать вращение. Процесс требовал определенной сноровки и зачастую сильно затягивался. Со временем было замечено, что добывать огонь трением лучше вдвоем, когда один человек крепко прижимает горизонтальную палочку и с силой давит сверху на вертикальную. Второй человек в это время быстро вращает между ладонями вертикальную палочку. Позже вертикальную палочку стали вращать с помощью ремешка, двигая им вправо и влево можно было значительно ускорить вращение. С развитием человечества были найдены и другие способы получения огня. Но многие завоевания и достижения человечества в последующие тысячелетия стали возможны лишь благодаря открытию и использованию огня.


Состав пламени в различных его частях весьма неоднороден, так как зависит от состава газовой смеси и условий подсоса воздуха, т. е. от скорости истечения смеси и давления окружающей атмосферы.
Для процесса сварки наибольшее значение имеет состав средней рабочей зоны пламени.
Химический состав пламени может быть определен экспериментально — непосредственно химическим анализом отобранных проб, или спектральным методом. Имеются также приближенные расчетные методы.
Непосредственный химический анализ состава пламени не может претендовать на большую точность результатов, так как при отборе проб из различных зон пламени возможно изменение состава газа при охлаждении.
Химический анализ продуктов горения ацетилено-кислородного пламени проводят обычно в зонах, отстоящих на некотором расстоянии от внутреннего ядра пламени. Что же касается состава неустойчивых промежуточных продуктов пирогенного разложения ацетилена во внутреннем ядре пламени, то последние наиболее точно определяются спектральным анализом. Так, например, спектральным анализом внутреннего ядра пламени обнаружен спектр углеводорода с полосами, испускаемыми молекулой углерода. Спектральный анализ наружной зоны пламени также обнаруживает присутствие радикала ОН и пр.
Основы регулирования состава сварочного ацетилено-кислородного пламени разработаны А.Н. Шашковым, установившим общие принципы определения оптимальных составов смеси горючего газа с кислородом при сварке сталей.
Ранее принятое деление пламени на нейтральное, восстановительное и окислительное, как показали исследования А.Н. Шашкова, необосновано, так как истинно нейтральное пламя при данном составе, температуре и давлении не окисляет и не раскисляет металл, находясь одновременно в равновесии и с самим металлом и с его низшим окислом. Сварочное же нейтральное пламя, имеющее соотношение смеси газов 1,1-1,2, интенсивно противодействует окислению, а в некоторых случаях, например при сварке железа, меди и никеля, восстанавливает металл сварочной ванны благодаря присутствию в средней зоне пламени необходимой концентрации окиси углерода и водорода — атомарного и молекулярного.
Также необоснованным и неверным является термин «восстановительное пламя», когда речь идет о пламени с избытком ацетилена, поскольку такое пламя не восстанавливает металл сварочной ванны, а науглероживает его.
Из диаграммы равновесия Н2 и СО с закисью железа и железом (рис. 37 и 38) видно, что нейтральными являются только те составы смеси, которые лежат на линиях равновесия (линия диаграмм) и, таким образом, при грубой регулировке сварочного пламени вероятность получения нейтрального пламени ничтожно мала. Нижний предел содержания в газовой смеси кислорода определяется из условия окисления всего углерода в СО.
Из реакции сгорания ацетилена в кислороде объемное отношение кислорода к ацетилену должно составлять 1, однако, с учетом того, что небольшая часть водорода сгорает в водяной пар за счет кислорода горючей смеси, а также из-за загрязненности кислорода, минимальное содержание кислорода в смеси должно быть больше и соответствовать 1.05-1,1.
При недостатке кислорода пламя имеет избыток свободного углерода, который сгорает в кислороде воздуха и образует дополнительную зону в виде конуса беловатого оттенка, обрамляющего ядро пламени, способного науглероживать металл при сварке.
Применительно к сварке низкоуглеродистой стали верхний предел содержания кислорода в нормальном пламени устанавливают из условия гетерогенного равновесия СО и Н2 с закисью железа FeO.
Количественно этот верхний предел зависит от многих параметров и в первую очередь от температуры сварочной ванны и состава горючего газа.

Химия пламени

Илья Абрамович Леенсон
«Химия и жизнь» №2, 2011

Чем проклинать тьму,
лучше зажечь хотя бы
одну маленькую свечу.
Конфуций

В начале

Первые попытки понять механизм горения связаны с именами англичанина Роберта Бойля, француза Антуана Лорана Лавуазье и русского Михаила Васильевича Ломоносова. Оказалось, что при горении вещество никуда не «исчезает», как наивно полагали когда-то, а превращается в другие вещества, в основном газообразные и потому невидимые. Лавуазье в 1774 году впервые показал, что при горении из воздуха уходит примерно пятая его часть. В течение XIX века ученые подробно исследовали физические и химические процессы, сопровождающие горение. Необходимость таких работ была вызвана прежде всего пожарами и взрывами в шахтах.

Но только в последней четверти ХХ века были выявлены основные химические реакции, сопровождающие горение, и по сей день в химии пламени осталось немало темных пятен. Их исследуют самыми современными методами во многих лабораториях. У этих исследований несколько целей. С одной стороны, надо оптимизировать процессы горения в топках ТЭЦ и в цилиндрах двигателей внутреннего сгорания, предотвратить взрывное горение (детонацию) при сжатии в цилиндре автомобиля воздушно-бензиновой смеси. С другой стороны, необходимо уменьшить количество вредных веществ, образующихся в процессе горения, и одновременно — искать более эффективные средства тушения огня.

Существуют два вида пламени. Топливо и окислитель (чаще всего кислород) могут принудительно или самопроизвольно подводиться к зоне горения порознь и смешиваться уже в пламени. А могут смешиваться заранее — такие смеси способны гореть или даже взрываться в отсутствие воздуха, как, например, пороха, пиротехнические смеси для фейерверков, ракетные топлива. Горение может происходить как с участием кислорода, поступающего в зону горения с воздухом, так и при помощи кислорода, заключенного в веществе-окислителе. Одно из таких веществ — бертолетова соль (хлорат калия KClO3); это вещество легко отдает кислород. Сильный окислитель — азотная кислота HNO3: в чистом виде она воспламеняет многие органические вещества. Нитраты, соли азотной кислоты (например, в виде удобрения — калийной или аммиачной селитры), легко воспламеняются, если смешаны с горючими веществами. Еще один мощный окислитель, тетраоксид азота N2O4 — компонент ракетных топлив. Кислород могут заменить и такие сильные окислители, как, например, хлор, в котором горят многие вещества, или фтор. Чистый фтор — один из самых сильных окислителей, в его струе горит вода.

Цепные реакции

Основы теории горения и распространения пламени были заложены в конце 20-х годов прошлого столетия. В результате этих исследований были открыты разветвленные цепные реакции. За это открытие отечественный физикохимик Николай Николаевич Семенов и английский исследователь Сирил Хиншельвуд были в 1956 году удостоены Нобелевской премии по химии. Более простые неразветвленные цепные реакции открыл еще в 1913 году немецкий химик Макс Боденштейн на примере реакции водорода с хлором. Суммарно реакция выражается простым уравнением H2 + Cl2 = 2HCl. На самом деле она идет с участием очень активных осколков молекул — так называемых свободных радикалов. Под действием света в ультрафиолетовой и синей областях спектра или при высокой температуре молекулы хлора распадаются на атомы, которые и начинают длинную (иногда до миллиона звеньев) цепочку превращений; каждое из этих превращений называется элементарной реакцией:

Cl + H2 → HCl + H,
H + Cl2 → HCl + Cl и т. д.

На каждой стадии (звене реакции) происходит исчезновение одного активного центра (атома водорода или хлора) и одновременно появляется новый активный центр, продолжающий цепь. Цепи обрываются, когда встречаются две активные частицы, например Cl + Cl → Cl2. Каждая цепь распространяется очень быстро, поэтому, если генерировать «первоначальные» активные частицы с высокой скоростью, реакция пойдет так быстро, что может привести к взрыву.

Н. Н. Семенов и Хиншельвуд обнаружили, что реакции горения паров фосфора и водорода идут иначе: малейшая искра или открытое пламя могут вызвать взрыв даже при комнатной температуре. Эти реакции — разветвленно-цепные: активные частицы в ходе реакции «размножаются», то есть при исчезновении одной активной частицы появляются две или три. Например, в смеси водорода и кислорода, которая может спокойно храниться сотни лет, если нет внешних воздействий, появление по той или иной причине активных атомов водорода запускает такой процесс:

H + O2 → OH + O,
O + H2 → OH + H.

Таким образом, за ничтожный промежуток времени одна активная частица (атом H) превращается в три (атом водорода и два гидроксильных радикала OH), которые запускают уже три цепи вместо одной. В результате число цепей лавинообразно растет, что моментально приводит к взрыву смеси водорода и кислорода, поскольку в этой реакции выделяется много тепловой энергии. Атомы кислорода присутствуют в пламени и при горении других веществ. Их можно обнаружить, если направить струю сжатого воздуха поперек верхней части пламени горелки. При этом в воздухе обнаружится характерный запах озона — это атомы кислорода «прилипли» к молекулам кислорода с образованием молекул озона: О + О2 = О3, которые и были вынесены из пламени холодным воздухом.

Безопасная лампа Дэви изображена на испанской марке слева (фото с сайта colnect.com), а справа — почтовая марка, посвященная 100-летию со дня рождения Н. Н. Семенова (фото с сайта www.philately.ru)

Возможность взрыва смеси кислорода (или воздуха) со многими горючими газами — водородом, угарным газом, метаном, ацетиленом — зависит от условий, в основном от температуры, состава и давления смеси. Так, если в результате утечки бытового газа на кухне (он состоит в основном из метана) его содержание в воздухе превысит 5%, то смесь взорвется от пламени спички или зажигалки и даже от маленькой искры, проскочившей в выключателе при зажигании света. Взрыва не будет, если цепи обрываются быстрее, чем успевают разветвляться. Именно поэтому была безопасной лампа для шахтеров, которую английский химик Хэмфри Дэви разработал в 1816 году, ничего не зная о химии пламени. В этой лампе открытый огонь был отгорожен от внешней атмосферы (которая могла оказаться взрывоопасной) частой металлической сеткой. На поверхности металла активные частицы эффективно исчезают, превращаясь в стабильные молекулы, и потому не могут проникнуть во внешнюю среду.

Полный механизм разветвленно-цепных реакций очень сложен и может включать более сотни элементарных реакций. К разветвленно-цепным относятся многие реакции окисления и горения неорганических и органических соединений. Таковой же будет и реакция деления ядер тяжелых элементов, например плутония или урана, под воздействием нейтронов, которые выступают аналогами активных частиц в химических реакциях. Проникая в ядро тяжелого элемента, нейтроны вызывают его деление, что сопровождается выделением очень большой энергии; одновременно из ядра вылетают новые нейтроны, которые вызывают деление соседних ядер. Химические и ядерные разветвленно-цепные процессы описываются сходными математическими моделями.

Что надо для начала

Чтобы началось горение, нужно выполнить ряд условий. Прежде всего, температура горючего вещества должна превышать некое предельное значение, которое называется температурой воспламенения. Знаменитый роман Рэя Брэдбери «451 градус по Фаренгейту» назван так потому, что примерно при этой температуре (233°C) загорается бумага. Это «температура воспламенения», выше которой твердое топливо выделяет горючие пары или газообразные продукты разложения в количестве, достаточном для их устойчивого горения. Примерно такая же температура воспламенения и у сухой сосновой древесины.

Самодельные зажигалки времен Великой Отечественной (Одна сделана из патрона от авиационной пушки). Изображение: «Химия и жизнь»

Температура пламени зависит от природы горючего вещества и от условий горения. Так, температура в пламени метана на воздухе достигает 1900°C, а при горении в кислороде — 2700°C. Еще более горячее пламя дают при сгорании в чистом кислороде водород (2800°C) и ацетилен (3000°C). Недаром пламя ацетиленовой горелки легко режет почти любой металл. Самую же высокую температуру, около 5000°C (она зафиксирована в Книге рекордов Гиннесса), дает при сгорании в кислороде легкокипящая жидкость — субнитрид углерода С4N2 (это вещество имеет строение дицианоацетилена NC–C=C–CN). А по некоторым сведениям, при горении его в атмосфере озона температура может доходить до 5700°C. Если же эту жидкость поджечь на воздухе, она сгорит красным коптящим пламенем с зелено-фиолетовой каймой. С другой стороны, известны и холодные пламена. Так, например, горят при низких давлениях пары фосфора. Сравнительно холодное пламя получается и при окислении в определенных условиях сероуглерода и легких углеводородов; например, пропан дает холодное пламя при пониженном давлении и температуре от 260–320°C.

Только в последней четверти ХХ века стал проясняться механизм процессов, происходящих в пламени многих горючих веществ. Механизм этот очень сложен. Исходные молекулы обычно слишком велики, чтобы, реагируя с кислородом, непосредственно превратиться в продукты реакции. Так, например, горение октана, одного из компонентов бензина, выражается уравнением 2С8Н18 + 25О2 = 16СО2 + 18Н2О. Однако все 8 атомов углерода и 18 атомов водорода в молекуле октана никак не могут одновременно соединиться с 50 атомами кислорода: для этого должно разорваться множество химических связей и образоваться множество новых. Реакция горения происходит многостадийно — так, чтобы на каждой стадии разрывалось и образовывалось лишь небольшое число химических связей, и процесс состоит из множества последовательно протекающих элементарных реакций, совокупность которых и представляется наблюдателю как пламя. Изучать элементарные реакции сложно прежде всего потому, что концентрации реакционно-способных промежуточных частиц в пламени крайне малы.

Внутри пламени

Оптическое зондирование разных участков пламени с помощью лазеров позволило установить качественный и количественный состав присутствующих там активных частиц — осколков молекул горючего вещества. Оказалось, что даже в простой с виду реакции горения водорода в кислороде 2Н2 + О2 = 2Н2О происходит более 20 элементарных реакций с участием молекул О2, Н2, О3, Н2О2, Н2О, активных частиц Н, О, ОН, НО2. Вот, например, что написал об этой реакции английский химик Кеннет Бэйли в 1937 году: «Уравнение реакции соединения водорода с кислородом — первое уравнение, с которым знакомится большинство начинающих изучать химию. Реакция эта кажется им очень простой. Но даже профессиональные химики бывают несколько поражены, увидев книгу в сотню страниц под названием «Реакция кислорода с водородом», опубликованную Хиншельвудом и Уильямсоном в 1934 году». К этому можно добавить, что в 1948 году была опубликована значительно большая по объему монография А. Б. Налбандяна и В. В. Воеводского под названием «Механизм окисления и горения водорода».

Современные методы исследования позволили изучить отдельные стадии подобных процессов, измерить скорость, с которой различные активные частицы реагируют друг с другом и со стабильными молекулами при разных температурах. Зная механизм отдельных стадий процесса, можно «собрать» и весь процесс, то есть смоделировать пламя. Сложность такого моделирования заключается не только в изучении всего комплекса элементарных химических реакций, но и в необходимости учитывать процессы диффузии частиц, теплопереноса и конвекционных потоков в пламени (именно последние устраивают завораживающую игру языков горящего костра).

Откуда все берется

Основное топливо современной промышленности — углеводороды, начиная от простейшего, метана, и кончая тяжелыми углеводородами, которые содержатся в мазуте. Пламя даже простейшего углеводорода — метана может включать до ста элементарных реакций. При этом далеко не все из них изучены достаточно подробно. Когда горят тяжелые углеводороды, например те, что содержатся в парафине, их молекулы не могут достичь зоны горения, оставаясь целыми. Еще на подходе к пламени они из-за высокой температуры расщепляются на осколки. При этом от молекул обычно отщепляются группы, содержащие два атома углерода, например С8Н18 → С2Н5 + С6Н13. Активные частицы с нечетным числом атомов углерода могут отщеплять атомы водорода, образуя соединения с двойными С=С и тройными С≡С связями. Было обнаружено, что в пламени такие соединения могут вступать в реакции, которые не были ранее известны химикам, поскольку вне пламени они не идут, например С2Н2 + О → СН2 + СО, СН2 + О2 → СО2 + Н + Н.

Постепенная потеря водорода исходными молекулами приводит к увеличению в них доли углерода, пока не образуются частицы С2Н2, С2Н, С2. Зона сине-голубого пламени обусловлена свечением в этой зоне возбужденных частиц С2 и СН. Если доступ кислорода в зону горения ограничен, то эти частицы не окисляются, а собираются в агрегаты — полимеризуются по схеме С2Н + С2Н2 → С4Н2 + Н, С2Н + С4Н2 → С6Н2 + Н и т. д.

В результате образуются частицы сажи, состоящие почти исключительно из атомов углерода. Они имеют форму крошечных шариков диаметром до 0,1 микрометра, которые содержат примерно миллион атомов углерода. Такие частицы при высокой температуре дают хорошо светящееся пламя желтого цвета. В верхней части пламени свечи эти частицы сгорают, поэтому свеча не дымит. Если же происходит дальнейшее слипание этих аэрозольных частиц, то образуются более крупные частицы сажи. В результате пламя (например, горящей резины) дает черный дым. Такой дым появляется, если в исходном топливе повышена доля углерода относительно водорода. Примером могут служить скипидар — смесь углеводородов состава С10Н16 (CnH2n–4), бензол С6Н6 (CnH2n–6), другие горючие жидкости с недостатком водорода — все они при горении коптят. Коптящее и ярко светящее пламя дает горящий на воздухе ацетилен С2Н2 (CnH2n–2); когда-то такое пламя использовали в ацетиленовых фонарях, установленных на велосипедах и автомобилях, в шахтерских лампах. И наоборот: углеводороды с высоким содержанием водорода — метан СН4, этан С2Н6, пропан С3Н8, бутан С4Н10 (общая формула CnH2n+2) — горят при достаточном доступе воздуха почти бесцветным пламенем. Смесь пропана и бутана в виде жидкости под небольшим давлением находится в зажигалках, а также в баллонах, которые используют дачники и туристы; такие же баллоны установлены в автомобилях, работающих на газе. Сравнительно недавно было обнаружено, что в копоти часто присутствуют шарообразные молекулы, состоящие из 60 атомов углерода; их назвали фуллеренами, а открытие этой новой формы углерода было ознаменовано присуждением в 1996 году Нобелевской премии по химии.