Черная дыра из интерстеллар

Быстро вращающаяся чёрная дыра по имени Гаргантюа

Оказавшись на обратной стороне кротовой норы, космический корабль входит в трехпланетную систему, вращающуюся вокруг сверхмассивной чёрной дыры, которую исследователи называют Гаргантюа. Предполагается, что сверхмассивные чёрные дыры, с массами от миллиона до нескольких миллиардов масс Солнца, сидят в ядрах всех галактик. Вероятно, что и в центре нашего Млечного Пути есть такой объект — Sagittarius А, чья масса превышает 4 миллиона Солнечных масс (4,31•106 M;). По Торну, Гаргантюа скорее похож на ещё более массивную сверхмассивную чёрную дыру, которая предположительно находится в ядре туманности Андромеды и которая оценивается в 100 миллионов солнечных масс (1.1–2.3 ; 108 M;). Её размер приблизительно пропорционален массе, а радиус такого гиганта охватывал бы орбиту Земли вокруг Солнца.
Такие огромные чёрные дыры не являются фантастическим преувеличением, поскольку у нас есть наблюдательные данные, подтверждающие существование таких «монструозных» чёрных дыр в далеких галактиках (Behemoth). Самой большой из обнаруженных на данный момент является чёрная дыра в галактике NGC 1277, находящейся в 250 миллионах световых лет от нас. Её масса может быть оценена в 17 миллиардов солнечных, а её размер сравним с орбитой Нептуна.
Ещё одной важной характеристикой Гаргантюа является то, что это быстро вращающаяся чёрная дыра. Все объекты во Вселенной, исключая саму Вселенную, имеют свойство вращаться. Естественно, что и чёрные дыры тоже вращаются, что описывается геометрией Керра. Последнее зависит от двух параметров: массы чёрной дыры (М) и момента количества движения (J). Важным отличием от обычных звёзд, которые вращаются по-разному, является то, что чёрные дыры по Керру вращаются с необычной устойчивостью: все точки на её условной поверхности (горизонте событий) вращаются с одной и той же угловой скоростью. Однако существует такой предельный момент количества движения Jmax , выше которого горизонт событий пропадет: это ограничение соответствует тому, что скорость вращения горизонта будет равна скорости света. В такой чёрной дыре, называемой «экстремальной», гравитационное поле у горизонта событий исчезнет, потому что внутреннее влияние гравитации будет компенсироваться за счет огромных отталкивающих центробежных сил. Тем не менее, вполне возможно, что большинство чёрных дыр во Вселенной имеет момент количества движения, довольно близкий к предельному. Например, типичная чёрная дыра звёздной массы (около 3 солнечных), считающаяся движущим механизмом в двойных рентгеновских источниках, должна вращаться на 5000 оборотах в секунду. Предположительно, чёрная дыра Гаргантюа, показанная в «Интерстелларе» как раз имеет момент количества движения на 10 в -10 степени близкий к предельному Jmax. Даже если это теоретически возможно, данная конфигурация всё равно выглядит нереалистичной с физической точки зрения. Потому что чем быстрее вращается чёрная дыра, тем тяжелее увлечь за собой вещество, вращающееся в том же направлении под воздействием центробежных сил, в то время как вещество, вращающееся в противоположном, легко «всасывается» в чёрную дыру, замедляя вращение. Вследствие этого слишком быстро вращающаяся чёрная дыра будет иметь тенденцию к замедлению до равновесной скорости, меньшей, чем у Гаргантюа (по релятивистским общим расчетам, чёрные дыры должны вращаться не быстрее, чем 0,998 Jmax). Однако преимуществом очень быстро вращающихся чёрных дыр является то, что планеты могут вращаться в непосредственной близости от горизонта событий, не падая под него. Это является ключевым моментом в фильме, а также позволяет очень сильное замедление времени.
Для шварцшильдовской чёрной дыры (то есть для дыры с моментом количества движения J=0), устойчивая внутренняя круговая орбита, в которой любой объект пройдет по спирали и врежется в чёрную дыру, расположена на расстоянии трех радиусов самой чёрной дыры. Для чёрной дыры с массой, равной 100 миллионам солнечных масс, это расстояние должно быть около 900 миллионов километров, чуть больше, чем расстояние от Юпитера до Солнца. Но для чёрной дыры Керра, вращающейся очень близко к предельному Jmax, устойчивая внутренняя круговая орбита может быть также близко, как сам горизонт событий, всего 100 миллионов километров. Это объясняет почему в «Интерстелларе» планета Миллер может вращаться над самым горизонтом событий и не падать.
Стоит также отметить, что чёрная дыра Керра это не волчок, крутящийся в стационарном внешнем пространстве; вращаясь, она задерживает всё полотно пространства-времени вместе с собой. Как следствие, планета Миллер должна вращаться со скоростью, близкой к световой.

Внешний Вид Гаргантюа

(И)

Черные дыры не испускают света, так что единственный способ увидеть Гаргантюа — через ее влияние на свет от других объектов. В Интерстелларе другие объекты — это аккреционный диск (Глава 9) и галактика, в которой она находится, включая туманности и обильное звездное поле. Ради простоты давайте пока включим только звезды.

Гаргантюа бросает на звездное поле черную тень, а также преломляет лучи света от каждой звезды, искажая видимый камерой звездный рисунок. Это искажение — гравитационная линза, описанная в Главе 3.

На рисунке 8.1 показана быстро вращающаяся черная дыра (назовем ее Гаргантюа) на фоне звездного поля, какой она предстала бы перед вами, находись вы в экваториальной плоскости Гаргантюа. Тень Гаргантюа — это абсолютно черная область. Сразу за границей тени находится очень тонкое кольцо звездного света, так называемое «огненное кольцо», которое я усилил вручную, чтобы сделать край тени более четким. Снаружи кольца мы видим густые брызги звезд в концентрическом узоре, созданном гравитационной линзой.

Рис. 8.1. Звездный рисунок, созданный гравитационной линзой вокруг быстро вращающейся черной дыры вроде Гаргантюа. На взгляд издалека, угловой диаметр тени в радианах составляет 9 радиусов Гаргантюа, деленные на расстояние от наблюдателя до Гаргантюа.

По мере движения камеры по орбите Гаргантюа кажется, что движутся звезды. Это движение в сочетании с линзой создает эффектно меняющиеся световые узоры. В одних областях звезды струятся с большой скоростью, в других — спокойно текут, в третьих — замирают на месте; см. видео на странице этой книги на Interstellar.withgoogle.com.

В этой главе я объясняю все эти нюансы, начиная с тени и ее огненного кольца. Потом я опишу, как на самом деле были получены изображения черной дыры в Интерстелларе.

Изображая Гаргантюа в этой главе, я считаю ее быстро вращающейся черной дырой, каковой ей и надлежит быть, чтобы обеспечить чрезвычайную потерю времени экипажа Эндуранс по отношению к Земле (Глава 6). Тем ни менее, в случае быстрого вращения массовую аудиторию могли бы смутить приплюснутость левого края тени Гаргантюа (рисунок 8.1) и некоторые специфические особенности звездного струения и аккреционного диска, так что Кристофер Нолан и Пол Франклин выбрали скорость вращения поменьше — 60 процентов от максимальной — для изображений Гаргантюа в фильме. См. последний раздел в Главе 9.

Внимание: Объяснения в следующих трех разделах могут потребовать больших умственных усилий; их можно пропустить, не потеряв нити повествования остальной книги. Не стоит тревожиться!

Тень и Ее Огненное Кольцо

Огненная скорлупа (Глава 6) играет ключевую роль в создании тени Гаргантюа и тонкого огненного кольца по ее краю. Огненная скорлупа — это розовая область вокруг Гаргантюа на рисунке 8.2, и она содержит орбиты почти пойманных фотонов (лучей света), вроде орбиты, изображенной на вставке справа сверху.

Предположим, вы находитесь в желтой точке. Белые лучи A и B, а также прочие лучи вроде них несут вам изображение огненного кольца, а черные лучи A и B несут изображение края тени. Например, белый луч A исходит от какой-то звезды вдали от Гаргантюа, он движется внутрь и попадает в ловушку по внутреннему краю огненной скорлупы в экваториальной плоскости Гаргантюа, где он вновь и вновь летает по кругу, гонимый пространственным вихрем, а затем ускользает и доходит до ваших глаз. Черный луч, также подписанный A, исходит с горизонта событий Гаргантюа, он движется наружу и попадает в ловушку на том же внутреннем крае огненной скорлупы, затем ускользает и достигает ваших глаз бок о бок с белым лучом A. Белый луч несет изображение кусочка тонкого кольца, а черный — изображение кусочка края тени. За сведение их бок к боку и направление вам в глаза отвечает огненная скорлупа.

Рис. 8.2. Гаргантюа (сфера в центре), ее экваториальная плоскость (голубая), огненная скорлупа (розовая и фиолетовая) и черные и белые лучи, несущие изображение края тени и тонкого кольца вокруг нее.

Аналогично для белого и черного лучей B, только они попадают в ловушку на внешней границе огненной скорлупы и движутся по часовой стрелке (пробиваясь навстречу пространственному вихрю), в то время как лучи A попадают в ловушку на внутренней границе и движутся против часовой стрелки (и пространственный вихрь подхватывает их). На рисунке 8.1 левый край тени приплюснут, а правый скруглен из-за того, что лучи A (с левого края) приходят со внутренней границы огненной скорлупы, очень близкой к горизонту, а лучи B (с левого края) — с наружной, расположенной куда дальше от горизонта.

Черные лучи C и D на рисунке 8.2 берут начало с горизонта, движутся наружу и попадают в ловушку на неэкваториальных орбитах в огненной скорлупе, затем ускользают со своих орбит-ловушек и доходят до ваших глаз, неся изображения кусочков края тени, лежащих вне экваториальной плоскости. Орбита-ловушка луча D показана на вставке справа сверху. Белые лучи С и D (не показаны), идущие от далеких звезд, попадают в ловушку бок о бок с черными лучами C и D и движутся к вашим глазам бок о бок с C и D, неся изображения кусочков огненного кольца бок о бок с кусочками края тени.

Линза Невращающейся Черной Дыры

Чтобы понять преломленный гравитационной линзой рисунок звезд и их струение по мере движения камеры, давайте начнем с невращающейся черной дыры и с лучей света, исходящих от единственной звезды (рисунок 8.3). Два луча света идут от звезды к камере. Каждый из них движется по самой прямой траектории, по какой только может в искривленном пространстве дыры, однако из-за искривления каждый луч изгибается.

Один изогнутый луч движется к камере вокруг левого края тени, другой — вокруг ее правого края. Каждый луч несет камере собственное изображение звезды. Эти два изображения, как их видит камера, показаны на вставке на рисунке 8.3. Я обвел их красными кружками, чтобы отличить их от всех остальных звезд, видимых камерой. Заметьте, что правое изображение намного ближе к тени дыры, чем левое. Это потому, что его изогнутый луч прошел ближе к горизонту событий дыры.

Рис. 8.3. Сверху: Искривленное пространство невращающейся черной дыры на виде из балка и два луча света, движущиеся в искривленном пространстве от звезды к камере. Снизу: Преломленный гравитационной линзой звездный рисунок, видимый камерой.

Всякая прочая звезда видна на картинке дважды, на противоположных сторонах тени дыры. Можете распознать какие-нибудь пары? Тень черной дыры на картинке состоит из направлений, из которых ни один луч не может прийти в камеру; посмотрите на треугольную зону, подписанную «тень» (англ. shadow), на верхней диаграмме. Все лучи, которые «хотят быть» в тени, ловит и глотает черная дыра.

По мере движения камеры вправо по орбите (рисунок 8.3) видимый камерой звездный узор меняется так, как показано на рисунке 8.4.

На этом рисунке выделены две отдельные звезды. Одна обведена красным (та же звезда обведена на рисунке 8.3). Другая — внутри желтого маркера. Мы видим два изображения каждой звезды: одно снаружи розовой окружности, другое внутри. Розовая окружность называется «кольцо Эйнштейна».

По мере движения камеры вправо изображения движутся вдоль красной и желтой кривых.

Изображения звезд снаружи кольца Эйнштейна (давайте назовем их первичными изображениями) движутся так, как и можно было бы ожидать: плавно слева направо, но отклоняясь от черной дыры по мере движения. (Можете объяснить, почему отклонение происходит от дыры, а не к ней?)

Рис. 8.4. Изменение звездного узора, видимого камерой по мере ее движения вправо по орбите на рисунке 8.3.

Однако вторичные изображения, внутри кольца Эйнштейна, движутся неожиданным образом: кажется, что они появляются из правого края тени, движутся наружу в кольцо между тенью и кольцом Эйнштейна, проворачиваются вокруг тени, и снова спускаются к краю тени. Это можно понять, вернувшись к верхней картинке на рисунке 8.3. Правый луч проходит рядом с черной дырой, так что правое изображение звезды находится рядом с ее тенью. В более ранний момент времени, когда камера находилась левее, правому лучу приходилось проходить еще ближе к черной дыре, чтобы изогнуться сильнее и добраться до камеры, так что правое изображение было совсем близко к краю тени. В противоположность этому, в более ранний момент времени левый луч проходил довольно далеко от дыры, так что был почти прямым и создавал изображение довольно далеко от тени.

Теперь, если вы готовы, вдумайтесь в последующее движение изображений, запечатленное на рисунке 8.4.

Линза Быстро Вращающейся Черной Дыры: Гаргантюа

Пространственный вихрь, создаваемый быстрым вращением Гаргантюа, меняет гравитационную линзу. Звездные узоры на рисунке 8.1 (Гаргантюа) выглядят несколько по-другому, чем на рисунке 8.4 (невращающаяся черная дыра), а струящиеся рисунки различаются еще больше.

В случае Гаргантюа струение (рисунок 8.5) выявляет два кольца Эйнштейна, показанных розовыми кривыми. Снаружи от внешнего кольца звезды струятся вправо (например, вдоль двух красных кривых), как и в случае невращающейся черной дыры на рисунке 8.4. Однако пространственный вихрь сосредоточил струящийся поток в узкие высокоскоростные полосы вдоль заднего края тени дыры, резковато изгибающиеся у экватора. Вихрь также создал турбуленции в струении (замкнутые красные кривые).

Вторичное изображение каждой звезды видно между двумя кольцами Эйнштейна. Каждое вторичное изображение обращается по замкнутой кривой (например, по двум желтым кривым), и обращается оно в направлении, противоположном красному струящемуся движению снаружи от внешнего кольца.

Рис. 8.5. Рисунок звездного струения, каким его видит камера рядом с быстро вращающейся черной дырой вроде Гаргантюа. В этой модели команды по визуальным эффектам Double Negative дыра вращается со скоростью 99,9 процентов от максимально возможной, а камера находится на круговой экваториальной орбите с окружностью вшестеро больше окружности горизонта. См. видео этой модели на странице этой книги на Interstellar.withgoogle.com.

Есть две совсем особые звезды в небе Гаргантюа с выключенной гравитационной линзой. Одна лежит точно над северным полюсом Гаргантюа, другая — точно под ее южным полюсом. Это аналоги Полярной звезды, которая располагается точно над северным полюсом Земли. Я разместил пятиконечные звезды на первичных (красные) и вторичных (желтые) изображениях полюсных звезд Гаргантюа. Кажется, что все звезды в небе Земли обращаются вокруг Полярной звезды по мере того, как нас влечет по кругу вращение Земли. Сходным образом у Гаргантюа все первичные звездные изображения обращаются вокруг красных изображений полюсных звезд по мере движения камеры по орбите дыры, но траектории их обращения (например, две красные кривые-турбуленции) сильно искажены пространственным вихрем и гравитационной линзой. Аналогично, все вторичные звездные изображения обращаются вокруг желтых изображений полюсных звезд (например, вдоль двух искаженных желтых кривых).

Почему в случае невращающейся черной дыры (рисунок 8.4) было видно, что вторичные изображения появляются из тени черной дыры, проворачиваются вокруг дыры и спускаются обратно в тень, а не обращаются по замкнутой кривой, как в случае Гаргантюа (рисунок 8.5)? Вообще-то, они таки обращаются по замкнутой кривой в случае невращающейся черной дыры. Однако, внутренний край этой замкнутой кривой так близко к краю тени, что его невозможно увидеть. Вращение Гаргантюа создает пространственный вихрь, и этот вихрь отодвигает внутреннее кольцо Эйнштейна наружу, вскрывая рисунок полного обращения вторичных изображений (желтые кривые на рисунке 8.5) и внутреннее кольцо Эйнштейна.

Внутри внутреннего кольца Эйнштейна рисунок струения более запутан. Звезды в этой области — это третичные и еще более высокоразрядные изображения всех звезд во Вселенной — тех же, что видны в виде первичных изображений снаружи от внешнего кольца Эйнштейна и в виде вторичных изображений между кольцами Эйнштейна.

На рисунке 8.6 я показываю пять маленьких картинок экваториальной плоскости Гаргантюа, на которых сама Гаргантюа обозначена черным, орбита камеры — розовым пунктиром, а луч света — красным. Луч света несет камере изображение звезды, которое находится на кончике голубой стрелки. Камера движется вокруг Гаргантюа против часовой стрелки.

Можно здорово вникнуть в гравитационную линзу, если самостоятельно пройтись по этим картинкам одной за другой. Отметьте: настоящее направление на звезду — вверх и вправо (посмотрите на внешние концы красных лучей). Камера и начало каждого луча указывают на изображение звезды. Десятое изображение совсем рядом с левым краем тени, а правое вторичное изображение — рядом с правым краем; сравнивая направления камеры для этих изображений, мы видим, что тень занимает дугу около 150 градусов в направлении вверх. Это несмотря на то, что настоящее направление от камеры к центру Гаргантюа — влево и вверх. Линза сместила тень относительно настоящего положения Гаргантюа.

Рис. 8.6. Лучи света, которые несут изображения звезд на кончиках голубых стрелок. (Англ. primary — первичный, secondary — вторичный, tertiary — третичный.)

Создание Визуальных Эффектов Черной Дыры и Кротовой Норы в Интерстелларе

Крис хотел, чтобы Гаргантюа выглядела так, как на самом деле выглядит быстро вращающаяся черная дыра с близкого расстояния, так что он попросил Пола проконсультироваться со мной. Пол вывел меня на связь с командой Интерстеллара, которую он собрал в студии по визуальным эффектам Double Negative в Лондоне.

Я вошел в раж, тесно работая с Оливером Джеймсом, главным ученым. Мы с Оливером разговаривали по телефону и по Скайпу, обменивались электронными сообщениями и файлами и встречались лично в Лос-Анджелесе и в его офисе в Лондоне. У Оливера ученая степень по оптике и атомной физике, и он понимает законы теории относительности Эйнштейна, так что мы говорили на одном и том же техническом языке.

Некоторые из моих коллег-физиков уже делали компьютерные модели того, что увидит наблюдатель, находясь на орбите черной дыры или даже падая в нее. Лучшими экспертами были Ален Riazuelo из Institut d’Astrophysique в Париже и Эндрю Гамильтон в Колорадском Университете в Боулдере. Эндрю создал видео о черных дырах, которое показывают в планетариях по всему миру, а Ален смоделировал черные дыры, которые вращаются очень-очень быстро, как Гаргантюа.

Так что первоначально я собирался свести Оливера с Аленом и Эндрю и попросить их предоставить ему необходимые входные данные. Несколько дней мне было неуютно от этого решения, а потом я передумал.

В течение своей полувековой карьеры физика я прикладывал огромные усилия, совершая новые открытия сам и воспитывая студентов, совершавших новые открытия. Почему бы, для разнообразия, не сделать что-нибудь просто потому, что это весело, спросил я себя, даже если другие уже делали это до меня? Так что я набросился на это “что-нибудь”. И это было весело. И к моему удивлению, побочным продуктом это привело (скромно) к новым открытиям.

Используя законы теории относительности и сильно опираясь на работу предшественников (особенно Брэндона Картера из Laboratoire Univers et Théories во Франции и Жанны Левин из Колумбийского Университета), я вывел необходимые Оливеру уравнения. Эти уравнения рассчитывают траектории световых лучей, начинающихся от некоторого источника света, к примеру, от далекой звезды, и движущихся сквозь искривленное пространство Гаргантюа к камере. Из этих лучей света мои уравнения затем рассчитывают видимые камерой изображения, учитывая не только источники света и искажение пространства и времени Гаргантюа, но и движение камеры вокруг Гаргантюа.

Получив эти уравнения, я сам опробовал их с помощью дружелюбного программного обеспечения под названием Mathematica. Я сравнивал изображения, создаваемые моим компьютерным кодом Mathematica, с изображениями Алена Riazuelo, и когда они согласовались, я возликовал. Затем я написал подробные описания своих уравнений и отправил их Оливеру в Лондон, вместе с моим кодом Mathematica.

Мой код был очень медленным и имел низкое разрешение. Задачей Оливера было перевести мои уравнения в компьютерный код, который мог бы создать необходимые для фильма изображения IMAX сверхвысокого качества.

Мы с Оливером делали это пошагово. Мы начали с невращающейся черной дыры и неподвижной камеры. Затем мы добавили вращение черной дыры. Затем добавили движение камеры: сперва движение по круговой орбите, а затем падение в черную дыру. А затем мы переключились на камеру, вращающуюся вокруг кротовой норы.

В этом месте Оливер поразил меня как громом среди ясного неба: чтобы смоделировать самые утонченные эффекты, ему понадобятся не только уравнения, описывающие траектории световых лучей, но еще и уравнения, описывающие, как поперечное сечение пучка света меняет размер и форму, проходя через кротовую нору.

Я более или менее знал, как это сделать, но уравнения были ужасно запутанны, и я боялся наделать ошибок. Так что я поискал техническую литературу, и обранужил, что в 1977 году Serge Pineault и Rob Rouber из Университета Торонто получили необходимые уравнения в почти нужной мне форме. После трехнедельной борьбы с собственной глупостью я привел их уравнения точно в нужную форму, выразил их в Mathematica и расписал Оливеру, который включил их в собственный компьютерный код. В конце концов, его код смог создать качественные изображения, необходимые для фильма.

В Double Negative компьютерный код Оливера был только началом. Он вручил его художественной команде под руководством Евгении фон Танзельманн, которая добавила аккреционный диск (Глава 9) и создала фоновую галактику со звездами и туманностями, которые будут искажаться линзой Гаргантюа. Затем ее команда добавила Эндуранс, Рэйнжеры и посадочные модули и анимацию камеры (изменяющиеся движение, направление, поле зрения и т. д.) и слепила изображения в очень убедительные формы: в невероятные сцены, которые и появляются в фильме. Продолжение см. в Главе 9.

Между тем, я ломал голову над высококачественными видео, присланными мне Оливером и Евгенией, напряженно пытаясь понять, почему изображения выглядят так, как выглядят, а звездные поля струятся так, как струятся. Для меня эти видео подобны экспериментальным данным: они вскрывают такие вещи, которые я бы никогда не выяснил сам, без этих моделей — например, то, что я описал в предыдущем разделе (рисунки 8.5 и 8.6). Мы собираемся опубликовать техническую статью-другую с описанием того нового, что мы узнали.

Внешний Вид Гравитационных Пращей

Хотя Крис решил не показывать ни одной гравитационной пращи в Интерстелларе, я задался вопросом, как бы они выглядели для Купера, когда он вел Рэйнжер к планете Миллера. Так что я воспользовался своими уравнениями и Mathematica для моделирования изображений. (У моих изображений разрешение намного ниже, чем у изображений Оливера и Евгении из-за медленности моего кода.)

На рисунке 8.7 показан ряд изображений, видимых с Рэйнжера Купера, когда он прокачивается вокруг черной дыры средней массы (ЧДСМ), чтобы начать спуск к планете Миллера — в моем научном толковании Интерстеллара. Это праща, описанная на рисунке 7.2.



Рис 8.7. Гравитационная праща вокруг ЧДСМ на фоне Гаргантюа

На верхнем изображении Гаргантюа находится сзади, а ЧДСМ проходит перед ней. ЧДСМ захватывает лучи света от далеких звезд, направленные к Гаргантюа, прокручивает их вокруг себя и выбрасывает к камере. Это объясняет бублик из звездного света, окружающий тень ЧДСМ. Хотя ЧДСМ в тысячу раз меньше Гаргантюа, она намного ближе к Рэйнжеру, чем Гаргантюа, так что выглядит лишь умеренно меньше.

По мере того, как для движущейся по праще камеры ЧДСМ уходит вправо, она оставляет за собой первичную тень Гаргантюа (средняя картинка на рисунке 8.7), и выталкивает перед собой вторичное изображение тени Гаргантюа. Эти два изображения совершенно аналогичны первичному и вторичному изображению звезды, преломленной гравитационной линзой черной дыры; но теперь линза ЧДСМ преломляет тень Гаргантюа. На нижней картинке размер вторичной тени сокращается по мере того, как ЧДСМ движется дальше. К этому моменту гравитационная праща почти завершена, и камера на борту Рэйнжера устремляется вниз, к планете Миллера.

Какими бы впечатляющими ни были эти изображения, их можно увидеть только вплотную к ЧДСМ и Гаргантюа, а не с огромного расстояния до Земли. Для земных астрономов наиболее впечатляющие оптические эффекты гигантских черных дыр — это торчащие из них джеты и свет сверкающего диска газа на их орбите. К ним мы сейчас обратимся.

20. См. рисунки 6.4 и 6.5.

— Предыдущая Глава —

Планета вращается вокруг черной дыры

Это кажется маловероятным. Предположим, планета быстро вращается вокруг черной дыры, чья масса в сто раз превышает массу Солнца. Она будет очень быстро разорвана приливной силой — разностью гравитации на внешней и внутренней сторонах планеты.

Кроме того, такая планета была бы выжжена радиацией и страдала бы от столкновений с другими телами, притягиваемыми черной дырой. Образоваться вблизи черной дыры планета не могла, а если бы и была притянута ей, не вращалась бы по стабильной орбите. Нужно помнить и о том, что солнечного света на ней не было бы — аккреционный диск производит большое количество рентгеновского излучения, но не света.

И, наконец, если бы такая планета существовала, посадка и взлет космического корабля были бы практически невозможны. Посадка с орбиты планеты потребовала бы преодолеть притяжение черной дыры — корабль просто сорвало бы с нее и бросило за горизонт событий, в центр дыры. Чтобы взлететь, нужно было бы развить скорость, близкую к скорости света.

Вердикт: практически невозможно.

Чем может быть вызвана/обусловлена волна высотой, как в фильме Интерстеллар, когда герои пребывают на планете другой галактики?

Alexander Ovcharenko 1550 4 года назад Программист АВТОР ВОПРОСА ОДОБРИЛ ЭТОТ ОТВЕТ

Научным консультантом фильма Интерстеллар является Кип Торн, известный физик. Вместе с выходом фильма Кип Торн опубликовал книгу Science of Interstellar (Leonid Suschev в комментарии подсказывает, что книга уже вышла на русском языке и называется «Наука за кадром Интерстеллар»), где объясняются все основные физические явления, показанные в фильме. Я вкратце перескажу своими словами текст книги.

Наиболее очевидной версией для возникновения волн на планете, действительно, являются приливы и отливы, по аналогии с тем, как они возникают на Земле под действием притяжения Луны. Однако эту версию приходится отбросить, потому что планета Миллер не может вращаться вокруг своей оси. Точнее говоря, её скорость вращения должна быть строго согласована со скоростью обращения вокруг чёрной дыры. Пожалуй, стоит объяснить это по-подробнее.

Дело в том, что планета Миллер находится экстремально близко к чёрной дыре, «на самом краю пропасти», как сказал один из героев фильма. Гравитация здесь столь сильна, что гравитационные силы растягивают планету, придавая ей форму довольно-таки прилично вытянутого яйца (эллипсоида, точнее говоря), которое своей вытянутой осью всегда направлено в сторону чёрной дыры. Если бы силы были ещё немного сильнее, они бы просто разорвали планету на части. Чтобы на планете были классические приливы и отливы, нужно чтобы это «яйцо» постоянно вращалось так, чтобы чёрная дыра описывала в небе круг, подобный тому, какой описывает на нашем небе Солнце. Но в этом случае гравитационные силы от чёрной дыры постоянно растягивали бы планету каждый раз в новом направлении (каждый раз в ту сторону, где в этот момент в небе находится чёрная дыра). То есть, гравитационные силы «месили» бы планету Миллер как тесто, каждый раз искривляя и формируя её поверхность заново. В таких условиях твёрдая кора планеты (холодная поверхность, покрывающая горячее планетарное ядро) сформироваться не может. Кора была бы мягкой, а вся планета представляла бы собою адский пульсирующий шар (точнее, яйцо, точнее, эллипсоид), заливаемый лавой, брызжущей повсюду сквозь деформирующуюся кору. По сюжету же планета Миллер — это водный мир. Значит, вращаться она не должна. В этом случае, планета застывает (в переносном смысле) в одной форме и со временем её кора застывает (в прямом смысле) так, как это произошло с нашей Землёй.

Поскольку классические приливы не подходят, Кип Торн предложил несколько другую, хотя и весьма похожую, модель. Он выдвинул идею, что планета Миллер не совсем строго «смотрит» своим «остриём» на чёрную дыру. В действительности, планета Миллер слегка покачивается как маятник, туда-сюда (это называется «либрация», наша Луна тоже так делает, в Интернете есть красивая анимация geektimes.ru ). То есть, также как и с маятником, в тот момент, когда вытянутая ось отклоняется от чёрной дыры в одну сторону, возникает сила, которая начинает разворачивать ось так, чтобы она смотрела строго на чёрную дыру. Тогда планета начинает разворачиваться в сторону этой силы, но на пике своего движения она по инерции «проскакивает» направление на чёрную дыру и оказывается повёрнута уже в противоположную сторону, а там всё опять повторяется. Всё как с маятником. При этом амплитуда (размах) либраций весьма мала, поэтому планетарная кора хоть и подвергается заметным нагрузкам, но, всё-таки, имеет шансы остаться целой.

Зная параметры чёрной дыры и планеты Миллер Кип Торн рассчитал, каким получается период таких покачиваний. К своему удовольствию он получил очень хороший для фильма результат: период колебаний примерно равен одному часу.

То есть, гигантские волны с периодом в один час возникают из-за либрации планеты. Осталось только понять, что же конкретно вызывает такие волны. Здесь Кип Торн приводит два достаточно правдоподобных механизма, которые по отдельности или вместе могли бы создавать такие волны.

Первый — это «плеск» воды. Если вы возьмёте стакан с водой, наклоните его с достаточной скоростью сперва в одну сторону, а потом тут же — в противоположную, вы создадите два встречных потока воды, которые столкнутся вместе и сделают «плюх» (этот пример я придумал сам, потому что пример Кипа длиннее для описания, не могу ручаться за качество моего примера). Либрации планеты как раз и создают эти встречные потоки.

Второй — это цунами. Либрация приводит к тому, что планета, всё-таки, слегка «вращается» относительно чёрной дыры. А это, как мы уже говорили, приводит к тому, что чёрная дыра растягивает планету, меняя её форму. То есть, поверхность планеты весьма заметно ходит ходуном. Это похоже на земные землятресения, только более медленные. Зато с более сильным размахом. Эти землятресения толкают воду и создают волны. На Земле это называется цунами. Огромные волны, приводящие на Земле к серьёзным разрушениям, возникают как раз из-за землятресений.

Национальный кинопортал Film.ru — все о кино

Вчера были опубликованы первые фотографии черной дыры – сверхмассивного коллапсара, находящегося в галактике Messier 87. Чтобы получить этот снимок, европейским ученым понадобилось задействовать сеть из восьми телескопов, расположенных на разных континентах. В честь такого события мы решили вспомнить, как с годами фильмейкеры изображали эту самую черную дыру в своих фильмах.

«Черная дыра», 1979

«Черная дыра», 1979

Сай-фай, который сегодня выглядит скорее как пародия на «Звездные войны», рассказывает историю о команде космического экспедиционного корабля «Паломино», отправившейся на поиски неизведанных миров. Во время миссии команда обнаруживает космический шаттл, который вращается в опасной близости к черной дыре. На шаттле обнаружили прототип Дарта Вейдера – капитана Ганса Рейнхардта в стеклянном шлеме – и его многочисленных робопомощников. За 20 лет Рейнхардт подготовил свой корабль к проходу сквозь черную дыру, поскольку считал, что по ту сторону можно обнаружить множество неизведанных миров. Команду «Паломино» история увлекает, вот только позже им предстоит узнать, что Ганс Рейнхардт давно сошел с ума, а его робопомощники – это спятившие члены бывшего экипажа корабля «Лебедь». В конце 70-х фильм был номинирован на две премии «Оскар» за лучшие визуальные эффекты и операторскую работу, а также на тот момент «Черная дыра» стала самым дорогим проектом студии Disney.

«Краткая история времени», 1991

«Краткая история времени», 1991

Мы решили включить в подборку знаменитый документальный фильм о жизни и научной деятельности легендарного физика Стивена Хокинга, основанный на его же одноименном бестселлере. В ленте уделяется внимание не только научным теориям Хокинга, но и личности и повседневной жизни самого автора. «Краткая история времени» не совсем экранизация, в документальной ленте полно интервью с родственниками и женой Хокинга, сокурсниками, преподавателями, коллегами и учениками. Но, несмотря на все это, из ленты можно извлечь много полезной информации о чёрных дырах, природе пространства и времени. Это если вдруг вам лень читать книгу.

«Сквозь горизонт», 1997

«Сквозь горизонт», 1997

В 2047 году спасательный экипаж «Льюис и Кларк» получает сигнал бедствия с космического корабля, пропавшего много лет назад. По прибытии спасательная команда обнаруживает, что шаттл, подающий сигнал, – это секретный правительственный проект, занимающийся разработкой перелётов со сверхсветовой скоростью. Им удалось создать искусственную чёрную дыру и использовать её энергию для искривления пространства-времени таким образом, чтобы начальная и конечная точки путешествия наложились друг на друга: кораблю остается пройти через образовавшийся пространственный туннель. В теории все звучит отлично, но на деле у испытателей силы карманной черной дыры начинаются серьезные проблемы. С этих пор можно начинать делать ставки на то, кто же вернется на Землю живым.

«Интерстеллар», 2014

«Интерстеллар», 2014

Полюбившейся многим сай-фай Кристофера Нолана в своем изображении черной дыры подобрался как можно ближе к истине, поскольку сценарий писался вместе со знаменитым американским физиком Кипом Торном. Сюжет разворачивается в недалеком будущем. Когда ресурсы нашей планеты были исчерпаны и она стала непригодной для жизни, трое исследователей отправляются сквозь червоточину, по ту сторону которой исследователи обнаружили несколько звёздных систем. В своей экспедиции они должны будут найти новую планету для жизни. Миссия проходила в рамках строгой секретности, а команда шла на большие риски, экспедиции могли посылать сигналы на Землю только в одну сторону и только раз в год. Из-за замедления времени экспедиция может оказаться очень продолжительной по времени Земли. Если все пройдет удачно, то людей начнут переселять в новый мир, если нет, то на один из миров по ту сторону червоточины отправится ограниченная группа людей и запас замороженных оплодотворённых яйцеклеток с целью основания колонии.

«Высшее общество», 2018

Новый фильм француженки Клер Дени вышел как нельзя кстати. Ведь ее изображение черной дыры в фильме очень похоже на ту самую фотографию, которую вчера презентовали европейские ученые. Инстаграм-аккаунт студии А24 даже опубликовал кадр из фильма для сравнения.

Кадр из фильма «Высшее общество», 2018

По сюжету команда преступников, приговоренных к пожизненному заключению, которым был дан второй шанс в жизни, отправится за пределы Солнечной системы в поисках черной дыры. Их предводительница, космическая ведьма, грезит об искусственном создании новой жизни на борту. Окончательно попрощавшись с рассудком, она вживляет семя главного героя по имени Монте одной из заключенных, в результате чего рождается здоровый ребенок, с которым Монте и суждено долететь до черной дыры.

Оставайтесь с нами на связи и получайте свежие рецензии, подборки и новости о кино первыми!
Яндекс Дзен |

24 Warez Ru

Недавно вышедший на экраны визуально-захватывающий фильм «Интрестеллар» основывается на реальных научных понятиях, таких как вращающиеся черные дыры, кротовые норы и расширение времени.
Но если вы не знакомы с этими понятиями, то возможно, слегка запутаетесь во время просмотра.
В фильме команда космических исследователей отправляется во внегалактическое путешествие сквозь кротовую нору. На другой стороне они попадают в иную Солнечную систему с вращающейся черной дырой вместо звезды.
Они находятся в гонке с пространством и временем, чтобы выполнить свою миссию. Такое космическое путешествие может показаться слегка запутанным, но оно основывается на основных принципах физики.
Вот основные 5 понятий физики, которые нужно знать, чтобы понять «Интерстеллар».
ИСКУССТВЕННАЯ ГРАВИТАЦИЯ
Самой большой проблемой, с которой сталкиваемся мы, люди, при длительных космических путешествиях, является невесомость. Мы родились на Земле, и наше тело приспособилось к определенным гравитационным условиям, но когда мы находимся в космосе длительное время, наши мышцы начинают ослабевать.
С этой проблемой сталкиваются и герои в фильме «Интерстеллар».

1
Чтобы справиться с этим, ученые создают искусственную гравитацию в космических кораблях. Одним из способов сделать это – раскрутить космический корабль, как в фильме. Вращение создает центробежную силу, которая отталкивает объекты к внешним стенкам корабля. Это отталкивание похоже на гравитацию, только в обратном направлении.
Такую форму искусственной гравитации вы испытываете, когда едете вокруг кривой малого радиуса и вам кажется, что вас отталкивает наружу, от центральной точки кривой. Во вращающемся космическом корабле стены для вас становятся полом.
ВРАЩАЮЩАЯСЯ ЧЕРНАЯ ДЫРА В КОСМОСЕ
2
Астрономы, хотя и косвенно, наблюдали в нашей Вселенной вращающиеся черные дыры. Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название – сингулярность.
Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр.
Этот процесс искажения называется «увлечение инерциальных систем отсчёта» или эффект Лензе-Тирринга, и оно влияет на то, как будет выглядеть черная дыра, искажая пространство, и что более важно пространство-время вокруг нее. Черная дыра, которую вы видите в фильме, достаточно сильно приближена к научному понятию.
3
Космический корабль «Эндюранс» направляется к Гаргантюа — вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца.
Она находится на расстоянии 10 миллиардов световых лет от Земли, и вокруг нее вращается несколько планет. Гаргантюа вращается с поразительной скоростью 99,8 процентов от скорости света.
Аккреционный диск Гарагантюа содержит газ и пыль с температурой поверхности Солнца. Диск снабжает планеты Гаргантюа светом и теплом.
4
Сложный вид черной дыры в фильме связан с тем, что изображение аккреционного диска искривлено гравитационным линзированием. На изображении появляется две дуги: одна образуется над черной дырой, а другая под ней.
КРОТОВАЯ НОРА
5
Кротовая нора или червоточина, которую использует экипаж в «Интерстеллар» – это одно из явлений в фильме, существование которого не доказано. Она гипотетическая, но очень удобная в сюжетах научно-фантастических историй, где нужно преодолеть большое космическое расстояние.
Просто кротовые норы – это своего рода кратчайший путь сквозь пространство. Любой объект с массой создает норку в пространстве, что означает, что пространство можно растягивать, деформировать и даже складывать.
Червоточина — это как складка на ткани пространства (и времени), которая соединяет две очень далекие области, что помогает космическим путешественникам преодолеть большое расстояние за короткий период времени.
Официальное название кротовой норы – «мост Эйнштейна-Розена», так как впервые она была предложена Альбертом Эйнштейном и его коллегой Натаном Розеном в 1935 году.
6
В двухмерных диаграммах устье кротовой норы показано в виде круга. Однако, если бы мы могли увидеть кротовую нору, она бы выглядела, как сфера.
На поверхности сферы был бы виден гравитационно искаженный вид пространства с другой стороны «норы».
Размеры кротовой норы в фильме: 2 км в диаметре и расстояние переноса — 10 миллиардов световых лет.
ГРАВИТАЦИОННОЕ ЗАМЕДЛЕНИЕ ВРЕМЕНИ
7
Гравитационное замедление времени – это реальное явление, наблюдаемое на Земле. Оно возникает потому, что время относительно. Это означает, что оно течет по-разному для различных систем координат.
Когда вы находитесь в сильной гравитационной среде, время течет медленнее для вас по сравнению с людьми, находящимися в слабой гравитационной среде.
Если вы находитесь возле черной дыры, как в фильме, ваша система координат, а, следовательно, восприятие времени отличается от восприятия того, кто находится на Земле. Это потому, что гравитационное притяжение черной дыры тем сильнее, чем ближе вы к ней находитесь.
89
Согласно уравнению Эйнштейна время течет медленнее в более высоких гравитационных полях. То же самое происходит на планете, близкой к черной дыре: часы тикают медленнее, чем на космическом корабле, вращающемся дальше.
Присутствие массы искривляет мембрану, как резиновый лист.
Если достаточно массы концентрируется в одной точке, формируется сингулярность. Объекты приближающиеся к сингулярности проходят через горизонт событий, из которого они никогда не возвращаются.
Для вас минута возле черной дыры будет длиться 60 секунд, но если бы вы могли взглянуть на часы на Земле, минута продлилась бы меньше 60 секунд. Это значит, что вы будете стареть медленнее людей на Земле, и чем сильнее гравитационное поле, в котором вы находитесь, тем сильнее замедляется время.
Это играет важную роль в фильме, когда исследователи встречаются с черной дырой в центре другой Солнечной системы.
ПЯТИМЕРНАЯ ВСЕЛЕННАЯ
10
Альберт Эйнштейн последние 30 лет своей жизни посвятил разработке «теории всего», которая бы сочетала математические понятия гравитации с другими тремя фундаментальными силами природы: сильную силу, слабую силу и электромагнитную силу. Ему, как впрочем, и другим физикам это не удалось.
Некоторые физики считают, что единственный способ разгадать эту загадку — это воспринимать нашу Вселенную, как 5-мерную, а не 4-мерную, как предлагал Эйнштейн в теории относительности, где сочетается трехмерное пространство с одномерным временем.
В фильме наша Вселенная представлена в 5-ти измерениях, и гравитация играет важную роль во всем этом.