Ардуино квадрокоптер своими руками

Новый дрон от DJI, Intel и Ryze Tech

С 9 по 12 января в Лас-Вегасе проходила международная выставка потребительской электроники CES 2018. Всемирно известная компания DJI Innovations совместно с предприятием Ryze Technology, а также при участии Intel представила очень интересную и необычную новинку – квадрокоптер Tello. Tello представляет собой мини-дрон и позиционируется как дрон-игрушка или дрон для развлечений, оснащён камерой 720p, а цена его – чуть больше 100 евро.

Общие характеристики

Новый квадрокоптер Tello – это мини-дрон с крайне скромными габаритами, но разнообразным функционалом. Производители создавали эту модель специально для детей и подростков, но она будет интересна и взрослым. Продолжительность полёта Tello – до 13 минут на одном заряде, дальность полёта – около 100 метров. Трансляция в разрешении 720p производится на экран смартфона через специальное приложение Tello. В нём же доступны настройки фото- и видеосъёмки. В комплекте с квадрокоптером идёт аккумулятор, набор запасных лопастей, а также комплект защиты лопастей.

Ryze Technology: новый игрок на рынке

Tello – это совместное произведение DJI и Intel с молодым стартапом Ryze Technology из того же Китая. Основана компания была в 2017 году. Пока что предприятие нацелено на изготовление дронов, оснащённых камерой, а также с арсеналом всевозможных «умных» функций и возможности обучения. Компания ставит целью повысить интерес молодёжи к современной технике.

В разработке дрона Tello молодому стартапу помогли именитые «гиганты»: от DJI был взят контроллер полёта, а от Intel – установлен мощный процессор. Вся эта мощь умещается в небольшом корпусе, который можно брать с собой куда угодно. Tello умеет «учиться»: владелец получит возможность программировать дрон, причём по заверениям разработчиков это будет настолько легко, что с программированием справятся не только подростки, но даже дети!

Нельзя сказать, что Tello – это продукт от DJI, хотя дрон и похож визуально на Spark. Всё-таки DJI и Intel – скорее партнёры, участвовавшие в разработке квадрокоптера. Кроме того, DJI будут предлагать Tello для покупки в своём онлайн-магазине.

Фишки новой модели

Квадрокоптер Tello относится скорее к дронам для развлечения (фандронам), чем к категории дронов с камерой. Этот малыш умеет совершать забавные трюки и сальто в воздухе, что доставит массу удовольствия пилотам младшего возраста. Tello можно без опаски запускать с ладони и сажать на неё в автоматическом режиме. Причём запуск можно произвести лёгким подбросом квадрокоптера в воздух.

Tello имеет целый ряд предустановленных функций для фото- и видеосъёмки (например, Circle Mode, 360 Grad, Up-and-Away). Стабилизация изображения производится цифровым образом, не механически. За это отвечает встроенный 14-ядерный процессор от Intel. Квадрокоптер снимает 5 Мп фото. Кроме того, Tello совместим с VR-очками. И при этом его вес – всего 80 гр.!

Кроме всего прочего у новинки есть ряд полезных функций для безопасности полёта. Одним движением пальца в приложении дрон может автоматически взлететь или совершить посадку. С помощью визуальных и звуковых сигналов Tello предупреждает о близком разряде аккумулятора. При потере сигнала срабатывает функция Failsafe – дрон автоматически приземлится. Новинка также имеет встроенную систему визуального позиционирования.

Программируемая игрушка

Ryze Technology в своей новинке уделило особое внимание воспитательному и учебному аспекту. Дети и подростки с помощью Tello могут без труда и в игровой форме выучить основы программирования (на языке программирования для детей Scratch).

Scratch – это язык программирования, созданный в 2007 году специально для детей младшего и среднего школьного возраста. С его помощью дети могут без особого труда узнать об основах программирования, а также проявить свою креативность и развить навыки коммуникации. Scratch – это целое онлайн-сообщество заинтересованных детей, подростков и педагогов, поддерживающих друг друга.

Именно благодаря Scratch дети получат возможность расширить полётные функции Tello. К примеру, перевороты и сальто в воздухе можно будет запрограммировать на 8 различных направлений. Возможными станут и другие интеллектуальные функции, изучаемые и испытываемые в игровой форме.

Немного теории

Вне зависимости от формы и технических возможностей квадрокоптера у него обязательно четыре винта, которые попарно вращаются в разные стороны. Это необходимо для обеспечения стабильности положения в воздухе, так как если все винты будут вращаться в одном направлении, то дрон будет крутиться вокруг своей вертикальной оси.

Перемещение дрона на Arduino и любом другом контролере осуществляется за счет изменения трех параметров:

  • тангаж;
  • крен;
  • рыскание.

Первый параметр определяет угол наклона вверх или вниз передней части квадрокоптера, позволяя выполнить снижение или подъем дрона. Крен определяет угол наклона, когда правая часть оказывает ниже или выше левой. Рыскание определяет угол поворота квадрокоптера Arduino вокруг вертикальной оси, проходящей через его центр тяжести, обеспечивая дрону поворот в горизонтальной плоскости на нужный угол.

Arduino – небольшая по габаритам плата (сравнима со спичечным коробком), имеющая собственный микропроцессор и память. На нем есть большое количество контактов для подключения компонентов, а возможность загрузки программы позволяет управлять ими по заданному определенному алгоритму.

В итоге плата Arduino дает широкие возможности для создания различных гаджетов, среди которых дрон лишь один из примеров.

Одновременно плата Arduino очень проста в освоении, поэтому работать с ней под силу даже людям, имеющим очень смутные познания в схемотехнике и программировании. Наличие же большого числа учебников, публикаций, видеоуроков позволит освоить простейшие действия с платой всего за пару часов. Непосредственно программирование на Arduino идет с помощью языка С++, имеющим большое распространение. Одновременно большое количество типовых программ позволит быстро его освоить до уровня, которого достаточно для управления дроном. Одновременно широкий выбор библиотек сократит время запуска первого дрона, предупредив появление детских ошибок.

Не потребует Arduino и наличия при сборке паяльника, так как вполне можно обойтись макетной доской и набором перемычек, что одновременно упрощает работу, позволяет быстро исправить какие-то недочеты и ошибки при сборке.

Как собрать программируемый квадрокоптер на Ардуино Уно своими руками?

Шаг №1. Делаем корпус

Проектируем на SolidWorks и распечатываем на 3D-принтере корпус будущего дрона. В качестве прототипа можно взять одну из существующих моделей квадрокоптеров, а если есть навыки, то лучше доработать параметры корпуса за счет сот, которые снижают общий вес устройства. Правда, здесь важно не перестараться, так как излишне облегченный корпус будет легко сноситься ветром в сторону, потребовав соответствующей корректировки пилотом. После распечатки корпуса можно на него установить двигатели и припаять провода.

Обратим внимание, что желательно передние лучи или пропеллеры выполнить другим цветом.

Это позволит проще ориентироваться в пространстве и всегда понимать, где передняя часть дрона, чтобы быстрее им управлять в полете.

Если у вас нет доступа к 3D-принтеру, то альтернативой станет покупка уже готовых лучей в одном из интернет-магазинов. Еще одним вариантом станет изготовление корпуса из подручных средств. Например, раму можно изготовить из куска фанеры, а для лучей, удерживающих двигатели, подойдут пластиковые трубы.

Шаг №2. Подключение Arduino

Подключение платы осуществляется по схеме, но по умолчанию нужно понимать, что Arduino подключается через контакты, а если вы используете аналог другого производителя, то важно проконтролировать правильность расположения контактов. Последние маркируются одинаково, поэтому для предупреждения ошибок придерживайтесь следующей схемы:

  • VDD-3.3V;
  • GND-GND;
  • INT-digital2;
  • SCL-A5;
  • SDA-A4;
  • VIO-GND.

Для питания платы MPU6050 Arduino допускается использование напряжения 3,3В, а если оно составит 5В, то произойдет выход из строя. На многих платах есть встроенный предохранитель, защищающий систему от повышенного напряжения, но рисковать мы не советуем. Также на плате может быть контакт AD0, который требуется подключать к земле. Для управления двигателями Arduino может понадобиться подача большего напряжения, которое можно повысить транзисторами.

Шаг №3. Скетч для Arduino

После подключения к Arduino платы MPU-6050 необходимо загрузить скетч I2C scanner code, куда вставляется код программы. Обратим внимание, что на этом этапе пригодятся хоть минимальные познания в программировании на Arduino, поэтому при отсутствии даже них стоит сделать небольшую паузу и разобраться с особенностями.

Теперь откройте серийный монитор Arduino IDE (он находится в разделе Tools на вкладке Serial Monitors) и убедиться в наличии подключенного 9600. Если все предыдущие этапы были выполнены верно, то будет обнаружено устройство I2C с присвоенным адресом 0х69 или 0х68, который нужно записать. Теперь можно загрузить один из скетчей, который будет постоянно обрабатывать информацию с акселерометра и гироскопа. В интернете подобных скетчей для Arduino достаточно много, поэтому выбирайте любой, но ориентируйтесь на отзывы пользователей. После скачивания подобного скетча проведите его разархивирование. Затем опять перейдите в Arduino IDE и зайдите по адресу sketch-import libraty-add library, куда нужно будет добавить папки с вашими скетчами.

Теперь обязательно откройте файл MPU6050_DMP6. Если у вас был присвоен адрес 0х69, то обязательно нужно расскоментировать строку после #includes, так как по умолчанию присваивается 0х68. На этом этапе уже можно получить первые значения с гироскопа и акселерометра. Для этого загрузите программу и откройте с 115200 окно серийного монитора, следуя дальнейшим инструкциям.

После сборки квадрокоптера на Arduino нужно будет откалибровать параметры акселерометра и гироскопа. Для этого достаточно найти ровную плоскую поверхность и поставить на нее плату. Теперь достаточно запустить скетч для проведения калибровки, после которой имеющиеся отклонения записываться и учитываются в скетче MPU6050_DMP6. Их достаточно прописать один раз и сохранить (в дальнейшем корректировка понадобится только после сбоя данных и не потребует много времени).

Шаг №4. Установка программы для Arduino и подключение

Основной задачей платы остается управление моторами. Arduino дрон подает на выход ток малого напряжения и силы тока, поэтому для подключения моторов необходимо использовать транзисторы. При подключении необходимо обратить внимание, что транзисторы должны быть заземлены, а земля на Arduino подключается к земле непосредственно источника питания.

Теперь можно попробовать запустить двигатели, которые должны вращаться в правильных направлениях (по 2 в каждую сторону). Если этого не произошло, то переключите контакт мотора с 5В на транзистор, что позволит ему начать вращение в обратную сторону. В дальнейшем корректировать направление моторов не потребуется, так как управление квадрокоптера осуществляется за счет изменения скорости каждого из них.

В интернете можно найти несколько программ Arduino, позволяющий стабилизировать дрон на постоянном уровне в воздухе и затем вести управление им. Стабилизация квадрокоптера осуществляется с помощью двух ПИД-контроллеров. Один из них используется для тангажа (отклонение носа дрона вверх и вниз), а второй для крена (отклонение влево и вправо).

ПИД-регулирование предусматривает использование трех входов (заданное положение, выход, измерение). Выход определяется текущим положением и измерениями, а регулятор стремится изменить этот показатель таким образом, чтобы результат измерения соответствовал заданному положению. Для дрона с четырьмя винтами используется два контроллера, каждый из которых определяет разницу в скорости вращения винтов, расположенных по диагонали. Если она будет равна нулю, то крен и тангаж будут отсутствовать.

Шаг №5. Модификация дрона

Самой большой проблемой подобных квадрокоптеров остается их вес и стоимость. Можно, конечно, подобрать более мощные моторы, но это вряд ли даст намного лучший результат. Единственным вариантом станет выбор в пользу вентильных приводов (безщеточных). По своим техническим характеристикам они будут намного лучше, но требуется дополнительное использование контроллеров скорости, что повысит стоимость всей конструкции.

Для снижения веса всего дрона лучше применять Arduino Uno из-за возможности снять чип процессора и установить на ProtoBoard. Это будет достаточно для выигрыша порядка 30 граммов веса, что при подобных масштабах весьма неплохо. Дополнительно правда понадобится несколько конденсаторов, а если нет желания возиться с дополнительной электроникой, то можете выбрать сразу Arduino Pro Mini.

На что обратить внимание?

Пытаясь собрать дрон своими руками на Arduino возникает мысль полностью написать программное обеспечение. От этой мысли нужно избавиться, во всяком случае, на первых этапах.

Например, для управления полетным контроллером сейчас достаточно готовых решений. Если же вы сразу решите писать что-то свое, то высок риск повреждения квадрокоптера. Причина в том, что математика полета составляет минимальную часть всего кода программы, а для управления квадрокоптером без барометра и системы GPS требуется хорошая практика (особенно она понадобится при некорректной реакции дрона Arduino на управляющие команды, что происходит почти всегда).

Значительно удобней сначала попрактиковаться и разобраться в существующих программах, что позволит четко понять принципы работы.

Если вы решите писать программу для контроллера своими руками, то готовьтесь к большим временным затратам, которые неразумны при отсутствии соответствующего академического интереса. Во всяком случае, имеющиеся программы и решения для квадрокоптеров на базе Arduino вполне могут выполнять все стандартные действия (снимать видео, фотографировать, летать свободно и по заданию).

Несколько советов новичкам

Решая заняться созданием квадрокоптера на Arduino, обратите внимание на следующие советы:

  • Не усложняйте первую конструкцию, устанавливая экшен-камеру. Вашей задачей остается создание дрона, который сможет взлететь и уверенно держаться в воздухе, а не упасть на землю, сломавшись при первом полете. Если же последнее произойдет, то легко можно разбить экшен-камеру, а это большие расходы.
  • Не гонитесь за большими масштабами, так как на первый раз достаточно создать небольшой рабочий Arduino дрон, над конструкцией которого можно будет дальше работать, совершенствуя и усложняя.
  • Сократите до минимума количество дополнительных элементов и соединений, так как большое число датчиков и всевозможных контролеров не всегда повышает надежность дрона в полете. Значительно лучше создать базовую конструкцию и постепенно ее усложнять, добавляя новые функции и возможности. Это будет значительно разумней и позволит в будущем проектировать «специализированные» дроны.
  • Если вы хотите изготовить квадрокоптер Arduino с камерой, то вам потребуется основание достаточно больших размеров, что снижает устойчивость всей конструкции.

В завершение обратим внимание, что программирование и создание квадрокоптера на базе Arduino – увлекательное, но достаточно сложное дело для новичков, поэтому не опускайте руки, если у вас не получается. Сделать на Arduino дрон вполне реально каждому и поможет в этом масса дополнительной информации и видео, которое вы легко найдете в интернете.

Квадрокоптер на Ардуино своими рукамиРейтинг 3.7/5 (3 голосов)

Digitrode

Управлять квадрокоптером – это веселое и интересное занятие. Интереснее может быть только создание своей системы управления такой игрушкой на базе какой-нибудь популярной платформы, например, Arduino. Чем и занялся энтузиаст под ником Dzl. Первым делом он разобрал пульт дистанционного управления для того, чтобы посмотреть, какая радиосистема в нем используется.

Внутри, как и ожидалось, была пара дешевых печатных плат с небольшим количеством компонентов на них.

Радиосвязь обеспечивалась небольшим дискретным радиомодулем. После дополнительного анализа и поиска в интерненте выяснилось, что модуль основан на микросхеме передатчика BK2421, работающего в диапазоне 2.4 ГГц. Сегодня, в принципе, большинство дешевых игрушек с радиоуправлением основаны на этом модуле.

Благодаря осциллографу и документации на микросхему было довольно просто найти выводы, по которым осуществлялась связь по интерфейсу SPI между модулем и остальной частью пульта.

Благодаря «прослушке» с помощью Arduino UNO стал понятен порядок инициализации и режим связи. имеется порядок инициализации.

Не вдаваясь в подробности низкоуровневой коммуникации, при включении пульта и квадрокоптера происходит следующее:

1. Пульт передает свой уникальный сетевой адрес или ID

2. Квадрокоптер принимает эту передачу, подтверждает ее и начинает прослушивать канал с данными от этого ID

3. После подтверждения пульт начинает передавать пакеты данных каждые 20 мс

Можно управлять одновременно несколькими квадрокоптерами, назначив им разные адреса. Передача ID проходит по одному фиксированному каналу, и данные передаются по одному из 12 случайных каналов. Квадрокоптеры автоматически сканируют радиоканалы, пока не найдут данные.

Данные передаются в пакете, состоящем из 8 байт, в следующем формате:

Байт 0 = throttle (газ) 0-255
Байт 1 =Yaw (рыскание) 0-255
Байт 2 =Yaw_trim (подстройка Yaw) 0-128
Байт 3 = Pitch (тангаж) 0-255
Байт 4 = Roll (крен) 0-255
Байт 5 = Pitch_trim (подстройка Pitch) 0-128
Байт 6 = Roll_trim (подстройка Roll) 0-128
Байт 7 = Fly/run 0=fly, 16=run

Затем была создана базовая станция, которая должна связываться квадрокоптерами. В качестве модулей использовались RFM-70, содержащие ту же микросхему BK2421. Следует отметить, что выводы BK2421 толерантны к 5 В, поэтому дополнительные резисторы для 3.3 В можно не ставить.

Для подключения одного и более квадрокоптеров к Arduino была написана специальная библиотека. Эта библиотека должна работать с любыми платами Arduino на базе чипов ATMEGA88 — ATMEGA328P. И в конце видео работы:

Необходимые детали и узлы

Прежде чем приступить к сборке квадрокоптера своими руками, необходимо обзавестись всеми необходимыми деталями. Мозгом нашей самоделки станет полетный контроллер Arduino Uno. Его возможностей более чем достаточно для того, чтобы управлять беспилотником.

Помимо микроконтроллера, нам понадобятся:

  • Аккумулятор (лучше несколько) на 3.7В
  • Плата MPU-6050 (на ней установлены гироскоп и акселерометр)
  • Транзистор ULN2003A
  • Коллекторные двигатели с полым ротором 0820
  • Провода

Необходимо сделать несколько замечаний. Так как мы собираем дешевый самодельный дрон, то наш выбор пал на коллекторные движки с полым ротором (так называемые coreless motors). Они далеко не так надежны, как бесколлекторные двигатели, но зато гораздо дешевле стоят. Кроме того, можно обойтись без дополнительных контроллеров скорости.

Зато невозможно обойтись без гироскопа и акселерометра. Гироскоп необходим для того, чтобы квадрокоптер мог удерживать заданное направление движения, тогда как акселерометр используется для измерения ускорения. Без этих устройств управлять коптером было бы гораздо сложнее (если вообще возможно), так как именно они предоставляют данные для сигнала, регулирующего скорость вращения винтов.

Мы не указали в списке необходимых деталей раму. Ее можно приобрести, а можно распечатать на 3D принтере каркас, лучи и крепления для двигателей. Второй вариант нам кажется более предпочтительным, тем более, что в интернете можно без труда найти проекты квадрокоптера.

Распечатанная на принтере рама окажется не только легкой, но и прочной. Но если доступа к 3D принтеру нет, раму можно заказать.

Пошаговая инструкция по сборке

Как напечатать раму и крепеж

3D принтеры можно найти во многих университетах, лабораториях, коворкингах. Зачастую доступ к ним бесплатный. Модели для печати можно создать самостоятельно, используя для этого, например, Solidworks. А можно воспользоваться уже готовыми решениями, при необходимости изменив параметры.

Как настроить акселерометр гироскопа

Для настройки акселерометра-гироскопа (I2C)мы рекомендуем использовать следующую библиотеку. Ни в коем случае не подключайте плату к напряжению 5В, иначе вы моментально ее испортите.

Вкратце расскажем, чем интересна плата I2C с датчиками. Она заметно отличается от обычной платы акселерометра с тремя аналоговыми выходами для осей X, Y, Z. I2C представляет собой интерфейсную шину, обеспечивающую передачу значительных объемов данных через логические цифровые импульсы.

Аналоговых выходов на плате не много, и в этом большой плюс I2C, ведь в противном случае нам бы пришлось использовать все порты на Arduino, чтобы получить данные от гироскопа и акселерометра.

Схема подключения к Arduino

Прежде чем плата I2C сможет обмениваться данными с Arduino, ее необходимо подключить к контроллеру.

Схема следующая:

  • VDD -3.3v
  • GND — GND
  • INT- digital 2
  • SCL — A5
  • SDA — A4
  • VIO – GND

Еще раз обращаем внимание на то, что для питания необходимо использовать необходимо именно 3.3В. Подключение платы к 5В скорее всего приведет к ее поломке (спасти может только регулятор напряжения, но он далеко не всегда присутствует на плате).

Если на плате присутствует контакт AD0, он подключается к земле (GND).

В библиотеке, на которую мы дали ссылку выше, используются перечисленные каналы.

Скетч для Arduino

Преимуществом выбранного для сборки дрона микроконтроллера является относительная простота работы с ним. Вам не придется читать специальные книги, документы и техническую документацию. Достаточно знать основы программирования Arduino, которые, как вы сейчас убедитесь, не так сложны.

Подсоединив плату MPU-6050 к контроллеру, включите его и перейдите по .

Нас интересует скетч I2C scanner code, вернее, его код.

Скопируйте программный код, вставьте в пустой скетч, после чего запустите его. Убедитесь, что подключение установлено к 9600 (для этого запустите Arduino IDE через Tools-Serial Monitor). Должно появиться устройство I2C с адресом 0×68 либо 0×69. Запишите или запомните адрес. Если же адрес не присвоился, скорее всего проблема в подключении к электронике Arduino.

Затем нам понадобится скетч, умеющий обрабатывать данные гироскопа и акселерометра. В интернете есть множество вариантов, и найти подходящий не проблема. Скорее всего, он будет в заархивированном виде. Разархивируйте скачанный архив, отройте Arduino IDE и добавьте библиотеку (sketch-import library-add library). Нам понадобятся папки MPU6050 и I2Cdev.

Открываем MPU6050_DMP6 и внимательно просматриваем код. Никаких сложных действий производить не придется, но если был присвоен адрес 0×60, то необходимо расскоментировать строку в верхней части (ее можно найти за #includes) и написать верный адрес. Изначально таv указан 0×68.

Загружаем программу, открываем окно монитора через 115200 и просто следуем инструкции. Через несколько мгновений вы получите данные с гироскопа/акселерометра. Затем следует провести калибровку датчиков.

Установите плату на ровную поверхность и запустите скетч MPU6050_calibration.ino (легко ищется в интернете). Просмотрите код, по умолчанию в нем указан адрес 0×68. После запуска программы у вас появится информация по отклонениям (offset). Запишите ее, она нам понадобится в скетче MPU6050_DMP6.

Все, вы получили функционирующие гироскоп и акселерометр.

Программа для Arduino

По вы сможете скачать программу для Arduino, с помощью которой коптер будет стабилизирован в полете и сможет зависнуть над землей. В дополнение к программе обязательно скачайте библиотеку с Arduino PID по .

Программа поможет вам управлять дроном. Алгоритм, используемый для стабилизации, основан на двух PID-контроллерах. Один предназначен для крена, другой – для тангажа.

Разница в скоростях вращения пары винтов 1 и 2 равна разнице в скоростях пары винтов 3 и 4. Тоже самое справедливо и для пар 1, 3 и 2, 4. PID-регулятор производит изменение разницы в скорости, после чего крен и тангаж становятся равными нулю.

Обратите внимание на цифровые пины Arduino для моторов и не забудьте изменить скетч.

Подключение к контроллеру

Для того, чтобы управлять коптером, нам необходимо получить контроль над моторами, подключив их к Arduino. Контроллер дает на выходе лишь небольшое напряжение и силу тока, поэтому подключение двигателей напрямую лишено смысла. Вместо этого можно поставить несколько транзисторов, позволяющих увеличить напряжение.

Для составления схемы нам необходимы:

  • Arduino
  • Двигатели
  • Транзисторы

Все это собирается на монтажной плате и соединяется коннекторами.

На первом этапе следует подсоединить 4 ШИМ выхода (обозначены ~) к транзистору. Затем подсоедините коннекторы к движкам, подключенным к питанию. В нашем случае мы используем аккумулятор на 5В, но подойдет и аккумулятор на 3-5В.

Транзисторы должны быть заземлены, а земля на плате Arduino должна быть подключена к земле аккумулятора. Двигатели должны вращаться в правильном направлении, то есть работать на подъем коптера, а не на его крен.

Переключив контакт двигателя с напряжения 5В на транзистор, вы увидите, что ротор изменит направление вращения. Единожды совершив настройку, больше возвращаться к изменению направления вращения ротора не придется. Теперь нас интересует скорость.

Запустив и проверив акселерометр, мы устанавливаем нашу схему на ProtoBoard. За ее неимением, можно использовать и обычную монтажную плату, предварительно напаяв на ней рельсы для контроллера.

Перед тем, как припаивать акселерометр к плате, необходимо выполнить его калибровку на горизонтальной поверхности. Это поможет добиться более точной работы сенсора в будущем.

Как еще можно модернизировать квадрик

Узким местом коптера являются его коллекторные движки. Если поискать, можно найти чуть более крупные и более мощные моторы, чем предложены в нашей статье, но значительного выигрыша в характеристиках не произойдет.

Впрочем, у нас была цель собрать недорогой квадрокоптер своими руками, и именно поэтому использовались дешевые моторы. Бесколлекторные двигатели заметно дороже, но зато они дадут вам заметно большую мощность и надежность. К ним придется докупить еще и контроллеры скорости, но это действительно эффективная модернизация.

Выбор платы Arduino Uno обусловлен тем, что с нее можно довольно легко снять чип и поставить его на ProtoBoard. Это позволяет уменьшить вес дрона на 30 грамм, но придется включить в схему дополнительные конденсаторы. Подойдет и плата Arduino Pro Mini.

Что касается программы Arduino, то ее можно сравнительно легко изменить и дополнить новыми функциями. Главное, что с ее помощью дрон способен в автоматическом режиме стабилизовать свое положение.

На квадрокоптер могут быть установлены дополнительные модули, например, плата приемника, что позволит организовать дистанционное управление дроном.

На этом мы завершаем статью о создании беспилотника на Arduino. Подписывайтесь на наши обзоры и делитесь полезными материалами в социальных сетях. До новых встреч.