128 битная система

Целью данной статьи является попытка посеять сомнение в голове читателя, уверенного, что он знает о разрядности всё или почти всё. Но сомнение должно быть конструктивным, дабы сподвигнуть на собственное исследование и улучшить понимание.

Термин «разрядность» часто используют при описании вычислительных устройств и систем, понимая под этим число бит, одновременно хранимых, обрабатываемых или передаваемых в другое устройство. Но именно применительно к центральным процессорам (ЦП), как к наиболее сложным представителям вычислительного железа, не делимым на отдельные детали (до тех пор, пока кто-то не придумал, как продать отдельно кэш или умножитель внутри чипа), понятие разрядности оказывается весьма расплывчатым. Продемонстрировать это поможет умозрительный пример.

Представьте себе, что вокруг благодатные 80-е, в мире (всё ещё) десятки производителей ЦП, и вы работаете в одном из них над очередным поколением. Никаких 256-битных SSE8, встроенных GPU и 5-канальных контроллёров памяти на свете пока нет, но у вас уже есть готовый 16-битный процессор (точнее, «16-битный» пишется в технической документации), в котором 16 бит везде и во всём — от всех внешних шин до архитектурного размера обрабатываемых данных. Реальным примером такого ЦП могут быть первые однокорпусные (правда, не однокристальные) ЦП для архитектуры DEC PDP-11. И вот приходит задание руководства — разработать новое, обратно совместимое поколение этого же ЦП, которое будет 32-битным — не уточняя, что понимается под последним. Именно это понимание и предстоит прояснить в первую очередь. Итак, наш главный вопрос: что именно надо удвоить по разрядности в нашем пока насквозь 16-битном ЦП, чтобы получившийся процессор мог называться 32-битным? Чтобы решать задачу было легче, применим два подхода: систематизируем определения и посмотрим на примеры.Систематизируем

Первое, что приходит в голову — разрядность чего именно считать? Обратимся к определению любой информационной системы: её три основных функции — это обработка, хранение и ввод-вывод данных, за которые отвечают, соответственно, процессор(ы), память и периферия. Учитывая, что сложная иерархически самоподобная система состоит из многих компонент, можно утверждать, что такое разделение функций сохраняется и на компонентном уровне. Например, тот же процессор в основном обрабатывает данные, но он также обязан их хранить (для чего у него есть относительно небольшая память) и обмениваться с другими компонентами (для этого есть разные шины и их контроллёры). Поэтому будем функционально разделять разрядности обработки, хранения и обмена информации.

Рискну предположить, что все производители любого программируемого «железа», особенно процессоров, на 90% стараются не для конечных пользователей, а для программистов. Следовательно, с точки зрения производителей процессор должен выполнять нужные команды нужным образом. С другой стороны, детали структуры кристалла (топологические, электрические и физические параметры отдельных транзисторов, вентилей, логических элементов и блоков) могут быть скрыты не только от пользователя, но и от программиста. Выходит, что разрядность надо отличать и по реализации — физическую и архитектурную.

Следует добавить, что программисты тоже бывают разные: большинство пишут прикладные программы на языках высокого уровня с помощью компиляторов (что делает код до некоторой степени платформонезависимым), некоторые пишут драйверы и компоненты ОС (что заставляет более внимательно относиться к учёту реальных возможностей аппаратной части), есть творцы на ассемблере (явно требующем знания целевого процессора), а кто-то пишет сами компиляторы и ассемблеры (аналогично). Поэтому под программистами далее будем понимать именно тех, для кого детали аппаратной реализации важны если не для написания программы вообще, то хотя бы для её оптимизации по скорости — «архитектурная» разрядность чего-либо будет относиться именно к программированию на родном машинном языке процессора или более удобном ассемблере, не залезая при этом в нутро ЦП (это уже вопросы микроархитектуры, которую мы для большего различия и назвали физической реализацией). Описанные нюансы всё равно влияют на всех программистов, т.к. языки высокого уровня почти всегда переводятся компиляторами в машинный код, а компиляторы тоже должен кто-то написать. Исключения в виде интерпретируемых языков тоже не стоят в стороне — сами интерпретаторы тоже создаются с помощью компиляторов.

Осталось рассмотреть, разрядность какой именно информации нам интересна. Что вообще потребляет и генерирует ЦП в информационном смысле? Команды, данные, адреса и сигнально-управляющие коды. О последних речь не идёт — их разрядность жёстко зафиксирована в конкретной аппаратной реализации и в большинстве случаев программно не управляема. Чуть трудней с командами — в семействе архитектур RISC, например, разрядность любого обращения к памяти должна быть равна физической разрядности шины данных процессора, в т.ч. и при считывании кода (кроме некоторых послаблений в современных ARM и PowerPC). Это хорошо для ЦП — нет проблем с невыровненным доступом, все команды имеют одинаковую, либо переменную, но просто вычисляемую длину. Зато плохо для программиста — RISC это усечённый набор команд, которые ещё и занимают больше места, чем при более компактном кодировании (для того же алгоритма нужно больше команд, но и для того же числа команд надо больше байтов). Поэтому именно CISC-парадигма завоевала наибольший подход с её разнообразием и переменной длинной команд, не равной разрядности чего-либо. Разумеется, все современные ЦП внутри — настоящие RISC, но это только физически, а не архитектурно. Остались только два вида информации — данные и адреса. Их и рассмотрим.Собираем

У нас имеется три критерия видов разрядности: функциональный (обработки, хранения и обмена), реализационный (физическая и архитектурная) и типовой (данных и адресов). Итого уже 12 видов этой непонятной штуки. Предположим, что на каждую комбинацию критериев для нашего исходного ЦП мы отвечаем «16-битная» (и физическая разрядность обработки данных, и архитектурная хранения адресов, и все остальные). Теперь посмотрим, какие из этих вопросов обязательно должны давать ответ «32-битная», чтобы получившийся процессор оказался именно таким.

Начнём с архитектурной части. Должен ли ЦП хранить данные и адреса в логическом 32-битном формате, чтобы называться 32-битным? Насчёт данных, очевидно, да, а вот по поводу адресов всё не так просто. Почти все 8-битные (по данным) ЦП имеют возможность хранить 16-битные адреса в парах регистров (иначе им не видать распространённой на этих платформах 16-битной адресации), но от этого их не называют 16-битными. Может быть, если ЦП сможет хранить 32-битные данные, но всего-то 16-битные адреса, его уже можно называть 32-битным?..

На аналогичные вопросы об архитектурных вычислениях над 32-битными данными и адресами, а также программно 32-битном обмене данных с программно 32-битной адресацией ответ может быть таким же — с данными надо, а с адресами не факт.


Intel 486DX2. Где-то здесь притаилась разрядность…

Перейдём на физическую реализацию. Должен ли ЦП хранить данные и адреса в физически 32-битном формате? Оказывается, не обязательно, т.к. для 32-битных операндов можно спарить регистры, чем успешно пользовались ещё 8-битные ЦП, начиная с i8080. А зилоговские 16-битные Z8000 могли даже счетверять регистры, получая 64-битный аргумент (только для данных). Это не так эффективно, т.к. полный объём данных, умещающийся в регистровом файле, не увеличится, но это и не требовалось. Зато всегда есть возможность обратиться и к старшей, и к младшей половине виртуального 32-битного регистра — камень в огороды архитектур IA-32 и MC68k, где можно обращаться только к младшей половине (в IA-32 — ещё и с префиксом, что замедляет выполнение).

Идём далее. Должен ли ЦП обрабатывать данные и адреса 32-битными физическими порциями? Оказывается, и это не требуется, операнды можно обрабатывать половинками в функциональных устройствах 16-битного размера. Стоит вспомнить процессор Motorola MC68000, применявшийся в первых Макинтошах, Амигах, Атари и других популярных машинах — он считался 32-битным, в нём есть 32-битные регистры, но нет ни одного 32-битного ФУ (оно появилось только в 68020). Зато есть целых три 16-битных АЛУ, два из которых умеют спариваться при выполнении 32-битной операции. У i8080 и Z80 8-битные АЛУ выполняли 16-битные операции для вычисления адреса последовательно над его байтами. Позже эта история повторилась с набором SSE и его 128-битными операндами, которые поначалу обрабатывались на 64-битных ФУ.

Наконец, обмен: нужно ли процессору физически принимать и передавать данные 32-битными порциями с 32-битной адресацией? На первый вопрос дали ответ почти все производители ЦП, выпустив чипы с половинной шириной шины: 8 бит для 16-битного i8088, 16 бит для 32-битных MC68000/010 и i80386SX/EX/CX, и даже 8 бит для 32-битного MC68008. С физической разрядностью шины адреса куда веселее. Начнём с того, что для многобайтовых шин данных (т.е. начиная с 16-битной) физическая адресация памяти может происходить по словам или по байтам. В первом случае на шину адреса всегда подаётся адрес слова, а шина данных считывает или записывает нужную его часть — от отдельного байта до слова целиком. Для обозначения разрядности доступа может применяться отдельная шина байт-маски (в архитектуре x86 такой приём начал применяться со времён i386 — по биту на каждый байт шины данных), либо комбинация управляющих сигналов с младшими битами шины адреса, которые в этом режиме не нужны (для 32-биной шины данных адрес слова нацело делится на 4, а потому младшие 2 бита шины адреса всегда равны нулю) — так было до выхода i386. Случай же адресации байтов возможен лишь при динамической подстройке ширины шины и из широко известных ЦП применялся только в MC68020/030. В результате к сегодняшнему дню используется именно адресация слов вместе с байт-маской, поэтому физическая разрядность шины адреса оказывается меньше её логической ширины на число бит, на единицу меньшее разрядности шины данных в байтах. Из чего следует, что 32-битная физическая шина адреса может быть только при 8-битной шине данных, на что ни один архитектор и инженер в здравом уме не пойдёт по очевидным соображениям.

Но это ещё не всё. Зачем нам вообще 32-битная физическая или логическая адресация? Середина-конец 80-х, на рынке только-только появились мегабитные микросхемы памяти, типичный объём памяти для ПК пока что измеряется сотнями килобайт, но чуть позже — мегабайтами. А 32-битная адресация позволит получить доступ к 4 ГБ физического ОЗУ! Да кому вообще такое может понадобиться в ближайшие лет 20 в персоналках?! Неудивительно, что первые популярные «32-битные» ЦП имели совсем не 32 бита логической ширины шины адреса: MC68000 имел 24 (23 физических + 1 для управления разрядами), а MC68008 — и вовсе 20. Intel 386SX (вышедший на 3 года позже оригинального полностью 32-битного i80386), помимо уполовинивания шины данных, сократил и шину адреса до 24 (23 физических) бит, а его встраиваемые версии 386EX/CX имели 26-битную шину. Более того, первые чипсеты, позволявшие оперировать 32-битными адресами, появились лишь в 90-х, а первые материнские платы, имевшие достаточное число слотов памяти, чтобы набрать >4 ГБ модулями максимального на тот момент размера — лишь в 2000-х. Хотя первые ЦП с 64-битной физической шиной адреса (IBM/Motorola PowerPC 620) появились аж в 1994 г.. Выводим

Итак, физически в процессоре вообще ничего не требуется делать 32-битным. Достаточно лишь архитектурно убедить программиста, что ЦП выполняет 32-битные операции одной командой. И хотя она при отсутствии полноценных внутренних ресурсов неизбежно будет декодироваться в цепочки микрокода для управления 16-битными физическими порциями информации и аппаратными блоками — это уже программиста не волнует. Так что же, достаточно переписать прошивку, переделать декодер и схему управления, и вот наш 16-битный процессор сразу стал 32-битным?

Как известно, любую хорошую идею можно довести до абсурда, и тогда она сама себя дискредитирует. Увеличение разрядности ЦП — не исключение. На этом месте архитектурщик сразу должен задаться вопросом — а зачем всё это? Увеличивать разрядность данных хорошо для ускорения работы с ними (часто требуется обрабатывать значения, не умещающиеся в 16 бит), а адресов — для получения возможности оперировать большими объёмами данных (ограничение в 64 КБ для 16-битной адресации, кое-как ослабленное сегментной моделью IA-16, сковывало программистов уже в середине 80-х). Можно, конечно, сделать страничную адресацию с программно переключаемыми банками (могли же 8-битные ЦП адресовать 1 МБ на популярных дешёвых ПК и игровых приставках), но ценой усложнения программ и замедления доступа к памяти. Аналогично — разве имеет смысл делать 32-битность для данных такой, что она почти не ускоряет производительность по сравнению с обработкой 32-битных чисел на 16-битной платформе под управлением программы, а не микрокода? Таким образом мы только упростим программирование, сэкономив на числе команд, но не получим скачок в скорости. Из чего мы приходим к выводу — увеличение разрядности должно реализовываться так, чтобы оно реально привело к качественному (больше памяти) и количественному (быстрее операции) скачку возможностей архитектуры. «Больше памяти» здесь относится именно к качественному развитию, т.к. многие алгоритмы и приложения вообще откажутся работать при недостатке ОЗУ, в то время как даже медленный процессор всё равно рано или поздно программу выполнит. Виртуальная память с дисковой подкачкой бессмысленна при менее чем 32-битной реализации.

Но означает ли всё это, что в ЦП как можно больше ресурсов, и аппаратных, и архитектурных, должны быть 32-битными, чтобы его можно было бы назвать полноценным 32-битным процессором? Совсем нет. Возьмём тот же MC68000 — у него 32-битная архитектура для данных и адресов и 32-битные регистры, но 16-битные АЛУ и внешняя шина данных и 24-битная физическая внешняя адресация. Тем не менее, недостаточная «32-битность» не мешает ему обгонять появившийся на 3 года позже «16-битный» 80286: на популярном в 1980-е бенчмарке Dhrystones MC68000 на 8 МГц набирает 2100 «попугаев», а 286 на 10 МГц — 1900 (также 16-битный i8088 на 4,77 МГц — 300).

Но всё это нам не поможет ответить на вопрос — что же такое разрядность процессора? В момент, когда мы уже было пришли к некоему заключению, на сцене появляется новый герой — тип данных. Всё вышеизложенное имело отношение лишь к целочисленным вычислениям и их аргументам. Но ведь есть ещё и вещественные. Кроме того, пока что мы оперируем скалярными величинами, но есть ещё и векторные. А ведь, по слухам, Intel намерена встроить вещественный сопроцессор прямо внутрь своего нового 80486 (напомню: на дворе у нас, условно — 80-е годы). С учётом того, что внутреннее физическое и архитектурное представление данных (с адресами FPU не работает) 80-битное — как же тогда называть «четвёрку» — «32/80-битным» процессором? Вернёмся обратно в настоящее — как называть Pentium MMX, который откусил 64 бита от каждого 80-битного скалярного вещественного регистра и назвал их целочисленным векторным регистром? А Pentum Pro/II с 256-битной шиной данных между кэшем L2 и ядром? (Ещё ранее MIPS R4000 и его варианты имели внутренний контроллёр L2 с внешней 128-битной шиной до самого кэша.) А как назвать Pentium III с его 128-битными регистрами XMM, хотя в каждом таком векторе могут пока храниться лишь 32-битные компоненты, а обрабатываться лишь парами в 64-битных ФУ, но не четвёрками? А как воспринимать готовящиеся сейчас для новых архитектур (в частности, Intel Larrabee) команды векторной адресации типа Scatter и Gather, где части векторного регистра воспринимаются как адреса, а не данные, и потому адресация тоже может считаться ххх-битной?

Современный спор о переходе с 32-битной на 64-битную платформу повторяет эту историю с дополнениями, ещё более подсаливающими и так разнообразное по вкусу блюдо. Прежде всего, если посмотреть на темпы удвоения разрядности (что бы под ней не понимали) однокристальных ЦП, то окажется, что переход от первых 4-битных к первым 32-битным произошёл всего за 8 лет — c 1971 г. (i4004) по 1979 г. (MC68000 и куда менее известный NS32016). Следующее удвоение до 64 бит потребовало 10 лет — i860 имел 32-битное целое скалярное АЛУ и 32-битные универсальные регистры со спариванием, но 64-битные FPU и целочисленное векторное ФУ, 64-битные внешние шины и, впервые, внутреннюю 128-битную шину ядро-кэш. А пока 64 бита добрались до ПК — прошло ещё лет 15, хотя 64-битный доступ к памяти (через 64-битную же шину данных, но для «32-битного» процессора) появился уже в первых Pentium в 1993 г.. А дело в том, что для целочисленных скалярных вычислений два главных типа операндов — данные и адреса — пока достаточно было иметь лишь 32-битными. Об избыточности 32-битной адресации для 80-90-х гг. уже сказано, но и жёсткая необходимость в 64-битных целочисленных вычислениях, в отличие от 32-битных, также до сих пор не возникала, да и не просматривается и сейчас. Для целых чисел диапазон от –2·109 до 2·109 или от 0 до 4·109 покрывает подавляющее большинство нужд, а редкие моменты 64-битности вполне удовлетворяются дедовским способом — операциями над частями операндов с переносом, что не так уж сильно медленнее и доступно с первых моментов появления 32-битных архитектур. Дополнительной пикантности добавляет тот факт, что 64-битная арифметика над целыми числами в архитектуре x86 появились ещё до AMD64 и EM64T, причём сразу векторная — начиная с набора SSE2 (2001 г.) существуют команды paddq и psubq для сложения и вычитания целых 64-битных компонентов, а команды 32-битного перемножения для любой архитектуры дают 64-битное число (команды деления, соответственно — его принимают; аналогично для многих 16-битных платформ, включая IA-16).

Разрядности некоторых процессоров для ПК

* — Мультиплексированная шина данных и адреса (для ЦП с интегрированным контроллёром памяти — только межпроцессорная)
«A/B|C/D» — для данных указана разрядность скалярного целого / вещественного | векторного целого / вещественного доменов
«X+Y» — имеет домены этого вида двух разрядностей
«X-Y» — в зависимости от команды или ФУ принимает все промежуточные значения с целой степенью двойки

Если вы дочитали до этого места, то объявленная цель статьи, скорее всего, уже достигнута, а Идеальное Конечное Точное Определение разрядности так и не найдено. Может быть, его вообще нет, и это даже хорошо. В конце концов, если компьютер это главный инструмент для работы с информацией, то каждая IT-технология это метод улучшения работы компьютера. Разрядность сама по себе ничего не даст в отрыве от всего остального арсенала высоких инфотехнологий. PDA/коммуникаторы, мобильники, нетбуки, медиа-плееры и прочая карманная электроника, а также гигантское количество встроенных контроллёров и бортовых компьютеров отлично работают, увеличивая свою популярность и без всякой 64-битности. Так зачем тогда переходят на большие разрядности? Зачем, например, никому пока не нужная 64-битность в Intel Atom для нетбуков, где 8 ГБ памяти мало того, что никому не нужны, так ещё и за пару часов досуха выжмут батарею, а научные или экономические вычисления (где могут потребоваться 64 целых бита) никто запускать не будет? Один из возможных ответов: «потому что мы можем». Дополнительная пара миллионов транзисторов для удвоения ещё оставшихся 32-битными блоков утонет каплей в море вентилей, уже потраченных на всё остальное в этом же чипе. Галопирующий прогресс микроэлектроники как главного паровоза IT сделал интегральный транзистор таким дешёвым, что теперь лакомый для любого маркетолога шильдик «64 bit» обойдётся потребителю в десяток лишних центов, обеспечивая совсем не бутафорское, а вполне реальное ускорение на 10-50 % в 1-5 % приложений. И если мелкая овчинка стоит почти бесплатной выделки, почему нет?

Мы не работаем над 128-битной архитектурой! Так — удивлённо и даже со смешком — прокомментировал вице-президент ARM Holdings мелькнувшее в азиатских СМИ известие о том, что ARM, покорившая 64 разряда в мобильных микропроцессорах, занялась теперь 128 битами. Собственно говоря, с популярной прессы много не возьмёшь; могли и соврать, и додумать, да и аргументация ARM звучит убедительно (64 бита покроют все потребности цифровой индустрии на много лет вперёд), но… Но что если не считать это бредом? Как много смысла (и есть ли он вообще) в разработке микропроцессора общего назначения, способного оперировать числами длиной в сто двадцать восемь бит?

Давайте начистоту: сколько-нибудь ощутимая потребность в таком процессоре на данный момент отсутствует. Для рядового пользователя разрядности как класса не существует давным-давно, со времён миграции на 32 бита (да и они-то в своё время оказались востребованы не сами по себе, а как бесплатная опция к умению новых процессоров защищать память). Массовый компьютерный мир всё ещё живёт в тех же самых 32 разрядах, лишь засматриваясь на следующую ступеньку и не говоря о том, чтобы прыгать через одну. Выбор разрядности за пользователя делают разработчики операционных систем, а они в массе своей всё ещё выбирают 32-битные конструкции (OS X с её «умолчательной» 64-разрядностью не в счёт).

В той же ситуации и программисты, которые давно уже работают с языками высокого уровня и крайне редко (синтез звука, анализ Big Data, кодирование-декодирование мультимедийных потоков, криптография, что ещё?) уходят ниже, к ассемблеру. Если обыватели не видят разрядности, то программеры её не чувствуют, о них заботится компилятор. Почему и принудительный переход к 64 битам на мобильных устройствах — инициированный Apple и подхваченный Intel, обещающей такие чипы уже в следующем году, — для большинства апп-девелоперов, скорее всего, пройдёт без проблем.

Вот так и получается, что даже 64 разряда нам пока не особо нужны, а про 128 и заикаться бессмысленно. Но давайте подойдём к теме с другой стороны. Попробуйте сформулировать, почему разговоры про «мобильную 64-битность» (а каких-то пять–семь лет назад и про 64 бита на десктопе) выводят вас из себя, а упоминание 128 бит кажется пустым дилетантским трёпом? Чем так уж провинились эти самые разряды, что нельзя просто взять и поставить в персоналку — представьте на минутку, что он вдруг появился — CPU с регистрами длиной в шестнадцать байт? Не считая понятных временных неудобств вроде перекомпиляции существующих программ, оптимизации кода для работы с данными большей длины и пропорционального увеличения накладных расходов (размер массивов данных и т. п.) — так вот, не считая этой мелочи, есть два раздражающих момента.

Момент первый — это тот факт, что обозначившаяся за последние годы необходимость в 64 разрядах опять сформирована не столько недостатком производительности, сколько побочным ограничением, а именно нехваткой оперативной памяти. Стараниями PC-вендоров каждый юзер знает теперь, что 32-битные CPU не в состоянии адресовать больше 4 Гбайт напрямую. На самом деле этот лимит сравнительно легко обходится, поскольку речь об ограничении памяти на один процесс, что среднестатистическому пользователю на среднестатистическом программном обеспечении в ближайшем будущем не грозит. Но тем сильнее раздражение: нам снова парят мозг, выдумывая трудности и навязывая «технологию завтрашнего дня», вместо того чтобы оптимизировать существующее железо и заняться наконец оптимизацией софта, разбазаривающего машинные ресурсы.

Момент второй — сравнительное благоденствие, которое мы сейчас переживаем. У производителей и сорок с лишним лет спустя после изобретения микропроцессора есть резервы и по тактовой частоте, и по количеству ядер (см. «Терафлопсы для PC: экстремальная многоядерность в действии»), и по энергопотреблению. Работая в этих направлениях, возможно получить ощутимый прирост производительности — без нужды что-либо менять собственно в программном обеспечении. Так на кой чёрт даже 64 бита?

Однако уже в обозримом будущем оба вышеозначенных фактора прекратят действовать или значительно ослабнут. Рост потребности в оперативной памяти сделает непрактичным 32-битный режим, а приближение к физическому пределу возможностей полупроводниковой микроэлектроники воспрепятствует продвижению вперёд прежними темпами. И вот тогда-то мы взглянем на увеличенную разрядность по-другому!

Тема 128 разрядов интересна практически полной своей неразработанностью. Можете смеяться, но статья в Википедии, посвящённая 128 битам, умещается на 1 (одной) страничке. Редкие исследователи, анализирующие преимущества высокоточной целочисленной арифметики (так называют 128-битный режим), сходятся на большой пользе для математики и физики. Но и для рядового пользователя, более обеспокоенного временем старта программы, сохранения документа, скоростью выборки из баз данных, наконец, энергоэффективностью (которая теоретически должна здесь вырасти скачком), возможность манипулировать 16 байтами за машинный цикл обозначит новую эпоху.

Всё говорит за то, что 128 бит станут первым барьером разрядности микропроцессоров после 8-битного, который будут штурмовать именно ради увеличенной производительности. Когда тактовую частоту нельзя будет повышать дальше, когда многоядерность и гетерогенность (распределение задачи между разнотипными вычислительными устройствами, в простейшем случае CPU и GPU) перестанут давать значительный прирост скорости, тогда повышение разрядности (читай: способность обработать больше данных за один удар «электронного сердца») с умной оптимизацией софта станет единственным реальным способом сдвинуться с мёртвой точки — конечно, не считая «замены рельсов», по которым движется компьютерный локомотив, то есть не привлекая нанотрубок, квантовых вычислителей и прочего подобного. Суперкомпьютеры уже столкнулись с этой проблемой (см. «Числогрызы ткнулись в физический предел»), и увеличение разрядности им определённо помогло бы.

Самое забавное, что незаметно для себя мы уже пользуемся 128-битными режимами. Да, массовых процессоров общего назначения, способных управляться с 16 байтами, за раз не существует. Однако в ограниченной форме 128-разрядность присутствует на широком рынке минимум полтора десятилетия (а экспериментально-коммерческие разработки были и ещё раньше — в частности модификации DEC VAX). Начало положили «мультимедийные» инструкции MMX/SSE в конце 90-х, манипулирующие 128 битами (хоть и не как одним целым, а разделяемыми на несколько чисел). В «нулевые» прогремела Transmeta (помните, где начинал свою американскую карьеру Линус Торвальдс?), оригинальные чипы которой использовали 128-битность для ускорения трансляции и исполнения эмулируемого машинного кода чужих процессоров. Сегодня последняя версия самой популярной операционной системы — MS Windows — откажется работать на компьютере, процессор и материнская плата которого не поддерживают ассемблерную инструкцию CMPXCHG16B, оперирующую опять-таки 128-битным числом. Наконец, многие вспомогательные технологии в массовом компьютинге используют 16-байтную математику: память в графических картах, адресация в IPv6, файловая система ZFS (само название которой произведено от «zettabyte» — разменной единицы в 128-битном мире). Все они выиграют, если центральные микропроцессоры перейдут на 128 бит.

Так где гарантии, что ARM или Intel не экспериментируют со 128 битами в своих лабораториях уже сейчас? Естественно, за плотно закрытыми дверями — и высмеивая саму идею на людях: никто из этих солидных господ не желает сам стать объектом насмешек, выглядеть замечтавшимся чудиком!

Но рисковать остаться без собственных наработок в таком деле, согласитесь, тоже не может позволить себе никто.

В статье использована иллюстрация David Bauer, Yellowcloud.

Когда появятся 128-битные процессоры и 128-битные шины данных?

А нахуя? Нет, ну серьезно – зачем. Битность процессора означает что за один присест он может манипулировать числами 128 бит длинной, то есть вот такими. Вопрос – зачем вам оперировать такими числами? Можно сделать все тоже самое на 64-битным процессоре, но за несколько проходов. Да даже 32-битного процессора было бы вполне достаточно, ведь одно 128 битное слово можно запихнуть последовательно в 4 32-битных ячейки памяти. Вот как раз регистры памяти и есть пожалуй единственная причина перехода с 32 битных процессоров на 64 битные. С 32 бит можно адресовать всего около 3.8 гигабайт памяти. А вот с 64 бит можно адресовать около 16 эксабайт памяти. Это очень, очень большое число. 640 килобайт… простите, 16 эксабайт будет достаточно еще несколько десятилетий, если не столетий. Так что 64-битная архитектура засела надолго. Да и ее-то мы ее толком не используем. Последние Intel процессоры линейки CoreI поддерживают максимум что-то около 32 гигабайт памяти, а серверные процессоры Xeon – около 225 гигабайт оперативки. Совсем мне 16 эксабайт. Так что прежде чем даже говорить о 128-битных процессорах, давайте сначала начнем 64-битные использовать на полную.